Exam Ordinary Differential Equations, TW2030 Monday 28 January 2019, 13.30-16.30h

- This exam consists of 5 problems.
- All answers need to be justified.
- Norm: total of 46 points; the distribution of points is a shown in the exercises. The exam grade is (total points+4)/5.
- Success!
- 1. The following differential equation for the function $x: \mathbf{R} \to \mathbf{R}$ is given

$$\frac{dx}{dt} = x^2.$$

a. (3) Find the solution x(t) using initial condition x(0) = 1, and give the maximal interval of existence of the solution.

The differential equation for the function $y: \mathbf{R} \to [1, \infty)$ reads

$$\frac{dy}{dt} = \sqrt{y-1}.$$

- b. (3) Find a solution y(t) using initial condition y(0) = 1, and argue whether this solution is unique or not.
- 2. Consider the initial value problem for the function y = y(x):

$$x^{2}y'' + 2xy' - \alpha^{2}x^{2}y = 0, y(0) = 1, y'(0) = 0. (1)$$

where $\alpha \in \mathbf{R}$ and $\alpha \neq 0$.

- a. (1) Find a singular point of (1) and determine whether it is regular or irregular.
- b. (2) Give the indicial equation and show that r = 0 is a solution; what is the other solution?
- c. (3) Find two linearly independent solutions of the form $y(x) = \sum_{n=0}^{\infty} a_n x^{n+r}$ by giving the recurrence relations that a_n satisfies. Mention for which values of n each of the recurrence relations holds.
- d. (2) Solve the recurrence relations obtained in (c) and give the solution of the initial value problem.

3. We consider the matrix differential equation for function $\mathbf{x}(t) \in \mathbb{R}^3$:

$$\dot{\mathbf{x}} = A \mathbf{x},$$

with matrix A defined by

$$A = \left(\begin{array}{ccc} -1 & a & 0\\ 0 & -1 & a\\ 0 & 0 & -1 \end{array}\right),$$

where $a \in \mathbf{R}$ is a constant.

- a. (7) Calculate e^{At} and give the solution of $\dot{\mathbf{x}} = A \mathbf{x}$ with $\mathbf{x}(0) = \mathbf{x}_0$.
- b. (4) Determine a particular solution of the nonhomogeneous problem

$$\dot{\mathbf{x}} = A \mathbf{x} + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} e^t \sin t.$$

4. The following system of differential equations is given:

$$\dot{x} = (x^2 - 1)y,
\dot{y} = (x+2)(y-1)(y+2).$$
(2)

- a. (2) Calculate all equilibria.
- b. (2) Characterise all equilibria (saddle, center, node, spiral/focus) and determine (if possible) the stability (asymptotically stable, stable, unstable) of each of the equilibria for the *linearised system* that is obtained after linearization around an equilibrium.
- c. (2) Determine (if possible) the stability of the equilibria for the *non-linear* system (2) and motivate your answer.
- d. (3) Give an expression for the orbits.
- e. (3) Show that there are infinitely many periodic solutions whose orbits enclose (-2,0).
- f. (3) Sketch the phase portrait. Draw the equilibria, periodic trajectories, some (special) orbits, and indicate the flow of the solutions by arrows.
- 5. (6) Show that if $X(t) \in \mathbf{R}^n \times \mathbf{R}^n$ is a fundamental solution of

$$\dot{\mathbf{x}} = A(t)\mathbf{x}$$
.

with $A(t) \in \mathbf{R}^n \times \mathbf{R}^n$ then $Y(t) = (X^T(t))^{-1}$ is a fundamental solution of

$$\dot{\mathbf{y}} = -A^T(t)\mathbf{y},$$

where the superscript T denotes transposition.