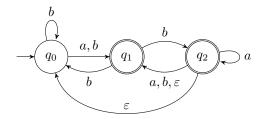

Midterm Tl2316 Automata, Languages & Computability

May 22, 2019, 13:30-15:30


- Total number of pages (without this cover page): 1.
- This exam consists of 7 open questions, the weight of each subquestion is indicated on the exam.
- Consulting handouts, readers, notes, books or other sources during this exam is prohibited. The use of electronic devices such as calculators, mobile phones etc is also prohibited.
- A single exam cannot cover all topics, so do not draw conclusions based on this exam about topics that are never tested.
- Formulate your answers in correct English and write legibly (use scrap paper first). Do not give irrelevant information, this could lead to a deduction of points.
- Before handing in your answers, ensure that your name and student number is on every sheet of paper.

Question:	1	2	3	4	5	6	7	Total
Points:	6	6	5	2	4	3	6	32

- 1. Consider a DFA $D = (Q, \Sigma, \delta, q_0, F)$.
 - (a) What, if anything, can we conclude about the language L(D) when
 - i. (1 point) |F| = |Q|? (Explain your answer in at most 3 lines.)
 - ii. (1 point) 0 < |F| < |Q|? (Explain your answer in at most 3 lines.)
 - (b) (2 points) A student claims that if $\delta^*(q_0,\mathsf{pho}) = q_1$, $\delta(q_1,\mathsf{e}) = q_0$, and $\delta^*(q_0,\mathsf{phoenix}) \not\in F$, it must also hold that $\mathsf{nix} \not\in L(D)$. You may assume $\{\mathsf{p},\mathsf{h},\mathsf{o},\mathsf{e},\mathsf{n},\mathsf{i},\mathsf{x}\} \subseteq \Sigma$. Is that reasoning correct? (Explain your answer in at most 5 lines.)
 - (c) (2 points) Consider now a DFA $D'=(Q,\Sigma,\delta',q_0,F)$. A student claims that since the set of accepting states of D' and D are the same, it must hold that L(D')=L(D). Is the reasoning correct? If so, prove it. If not, provide a counterexample in the form of two DFAs of at most 3 states each.
- 2. Consider the following two DFAs, D on the left and D^\prime on the right:

- (a) (1 point) Construct a new DFA D'' of at most 2 states, such that $L(D'') = \overline{L(D)}$. A transition diagram and a short explanation suffice.
- (b) (5 points) Use the procedure from Sipser to construct a DFA D''', such that $L(D''')=L(D)\cup L(D')$. You should leave out unreachable states.
- 3. Consider the NFA N depicted as:

- (a) (1 point) Give a word of length 5 that is in the language L(N).
- (b) (4 points) Add at most 5 states to N and modify the accepting states to create a new NFA N' such that $L(N') = L(N) \circ L(b^*(a \cup ab)^*)$.
- 4. (2 points) State three properties a GNFA should adhere to in one line each.
- 5. Consider the following rules of a CFG $G = (V, \Sigma, R, S)$, over $\Sigma = \{a, b, c\}$:

$$\begin{split} S &\to bAb \mid aBa \mid A \mid B \\ A &\to a \mid b \\ B &\to c \mid AbA \mid \varepsilon \end{split}$$

- (a) (1 point) Give a valid set V.
- (b) (3 points) Show that this grammar is ambiguous. (Explain your answer in at most 6 lines.)
- 6. (3 points) Consider the following PDA P; give a grammar G with at most 6 rules such that L(G) = L(P).

$$a, \varepsilon \to A \qquad b, A \to \varepsilon$$

$$b, \varepsilon \to B \qquad a, B \to \varepsilon$$

$$a, \varepsilon \to A \qquad b, \varepsilon \to \varepsilon$$

$$a, \varepsilon \to A \qquad c, \varepsilon \to \emptyset$$

$$b, \varepsilon \to \varepsilon \qquad q_2 \qquad \varepsilon, \$ \to \varepsilon$$

7. (6 points) Consider the following language, where the alphabet $\Sigma = \{a, b\}$:

$$L = \{b^n abv \mid v \in \Sigma^*, n \ge 1, \text{ and } |v| = 8n + 4\}$$

This language is **not** regular. Prove this using the pumping lemma in at most 20 lines.