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electronic devices such as a calculator, mobile phones etc is also prohibited.
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• Before handing in your answers, ensure that your name and student number is on every page and
indicate the number of pages handed in on (at least) the first page.
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1. Suppose we have an NFA N = (Q,Σ, δ, q1, F ) with Σ = {a, b} and the following transition graph:
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(a) (1 point) Give Q− F .

Solution: {q1, q2}

(b) (1 point) Give δ∗(q1, abaab).

Solution: {q1, q2, q3}

(c) (5 points) Use the method described by Sipser to find a regular expression R that is equivalent to
N , i.e., such that L(N) = L(R). Show every step in the process.

Solution: First, transform N into a GNFA:
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Then, eliminate states, first q2:
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Then q3:

qs q1 q4 qa
ε

a

a

b
ε ∪ b

Then q4:
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Finally, q1:

qs qa
(aa∗b)∗aa∗(ε ∪ b)

Hence, R = (aa∗b)∗aa∗(ε ∪ b).

(d) (3 points) Give the transition graph of an NFA H such that L(H) = L(N)◦L(ca∗c) and H contains
no more than 7 states.

Solution:
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2. Suppose we have the following language over the alphabet Σ = {a, b, c}:

L = {uv | u ∈ Σ∗, |u| = m and v = anbncn, with m = 3n and n ≥ 0}

(a) (7 points) Is L a regular language? If so, give a regular expression R such that L(R) = L. If not,
prove this using the pumping lemma.

Solution: Suppose L is regular. This means there must exist some pumping length p > 0 for
L such that all words w longer than p can be split up into three parts x, y and z, with |y| > 0
and |xy| ≤ p. For this division of w, and any i ≥ 0, xyiz ∈ L. Let’s take the word w = a4pbpcp

which is in L (m = 3p and n = p). This word is longer than p, so the above holds for this word.
Given the requirements, we know that x = aα, y = aβ and z = a4p−α−βbpcp, with 0 ≤ α < p,
0 < β ≤ p and α+ β ≤ p. Now, taking i = 2, we get aαa2βa4p−α−βbpcp = a4p+βbpcp, which
is clearly not in L since β > 0. We have obtained a contradiction, so L must not be regular.

(b) (3 points) Give a brief description (in no more than 15 lines) of how one might construct a DFA D
that recognizes the difference of the languages of two NFAs N1 and N2, i.e., L(D) = L(N1)−L(N2).

Solution: The difference can be defined in terms of intersection and complement: L(D) =
L(N1) − L(N2) = L(N1) ∩ L(N2)c. First, we transform the NFAs into DFAs M1 and M2,
respectively. We can then invert the accept states of M2, resulting in M ′2. Then we use the
construction for the intersection of M1 and M ′2 (proof of Theorem 1.25), choosing as accept
states F = FM1 × FM ′

2
.

3. Suppose we have a context-free grammar G = (V,Σ, R, S), with R containing the following rules:

S → ABC

A→ aC | D
B → bB | A | ε
C → Ac | Cc | ε
D → aa.
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(a) (1 point) Give a parse tree for the word acbbc.

Solution: S
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(b) (2 points) Give two different leftmost derivations of the word aaaac.

Solution:

S ⇒ ABC ⇒ DBC ⇒ aaBC ⇒ aaAC ⇒ aaaCC ⇒ aaaAcC ⇒ aaaaCcC ⇒
aaaacC ⇒ aaaac

S ⇒ ABC ⇒ DBC ⇒ aaBC ⇒ aaAC ⇒ aaDC ⇒ aaaaC ⇒ aaaaCc⇒ aaaac

(c) (3 points) Give a grammar G′ such that L(G′) = L(G)∗.

Solution: G′ = (V,Σ, R′, S), with R′ containing the following rules:

S → ABCS | ε
A→ aC | D
B → bB | A | ε
C → Ac | Cc | ε
D → aa

(d) (4 points) Prove that if L1 and L2 are context-free languages, then L1L2 is also context free. (That
is, context-free languages are closed under concatenation.)

Solution: There exist context-free grammars G1 = (V1,Σ1, R1, S1) and G2 = (V2,Σ2, R2, S2)
for L1 and L2, respectively. A new grammar G that recognizes L1L2 can be created by
combining G1 and G2 and adding a new start variable S, along with a new rule S → S1S2.
If necessary, rename variables from G1 and G2 to ensure V1 ∩ V2 = ∅. Now G = (V1 ∪ V2 ∪
{S},Σ1 ∪ Σ2, R1 ∪R2 ∪ {S → S1S2}, S).

4. Suppose we have the following language over the alphabet Σ = {a, b}:

L = {ambn | 2m = 3n+ 1 and m,n ≥ 0}

(a) (6 points) Give a PDA P that recognizes L, i.e., such that L(P ) = L. A transition graph suffices.
Your PDA must have no more than 9 states.
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Solution:

q1 q2 q3 q4 q5 q6
ε, ε→ $ a, ε→ ε a, ε→ X

a, ε→ X

b,X → ε

b,X → ε

ε, $→ ε

(b) (2 points) Explain in no more than 10 lines how P recognizes L.

Solution: L can be written as aa(aaa)k(bb)kb, with k ≥ 0. The PDA reads at least two as
and additional as come in multiples of 3. Meanwhile, the stack keeps track of how many bs
there will need to be: when there are 2 as, only 1 is needed, and otherwise 2 additional bs are
needed for every 3 as. There is always at least 1 b due to the transition q4 → q5. Finally, the
PDA marks and checks for the bottom of the stack.

(c) (2 points) Show how P processes the word aaaaabbb by giving a sequence of state descriptions.

Solution:

(q1, aaaaabbb, ε) ` (q2, aaaaabbb, $)

` (q3, aaaabbb, $)

` (q4, aaabbb,X$)

` (q2, aabbb,XX$)

` (q3, abbb,XX$)

` (q4, bbb,XXX$)

` (q5, bb,XX$)

` (q5, b,X$)

` (q5, ε, $)

` (q6, ε, ε)

End of the exam


