Exam - C54240 Deep Learning - TU Delft

13 April 2022 - 09:00—12:00 - X - Sports Hall 3

Closed book exam, no books, papers, notes, phones etc. allowed. The exam has 8 coding questions (labs),
8 open questions (lectures) and 14 multiple choice questions (papers). Answer on the separate answer
sheets. Explain all answers, i.e. explicitly show intermediate steps to clarify if needed for coding /

calculations / motivations / etc. Good luck!

1 Lab assignments (38pts)

1. Question (4pts) Implement the forward pass of a
linear layer, followed by a ReLU activation func-
tion:

y=xW+b
y = Sigmoid(y)

Here x has dimensions [batch_size, in-
put_channels]. Use the code template provided
below. You may use elementary operations from
the PyTorch library only, i.e. no predefined lay-
ers from torch.nn. Sub-questions:

A) Placeholder for layer weight and bias (1pts)
B) Forward pass (3pts)

import torch

: class Linear(object):

Fully connected layer.

Args:
in feat: number of input features
out_feat: number of output features

W

def __init__(self, in_feat, out_feat):
1 super(Linear, self).__init__()

A) Define placeholder tensors for
layer weight and bias. The placehol-
der tensors should have the correct
1 # dimension according to the in_feat
1 # and out_feat variables.

1 # A) Your code

oes here,

RS

END OF YOUR CODE

self.init_params() # Init. parameters

de

-

init_params(self):

Initialize layer parameters. Sample

weight from Gaussian distribution and

bias uniform distribution.

self.weight = torch.randn_like(
self.weight)

3 self.bias = torch.rand_like(self.bias)

de

—

forward(self, x):
Forward pass of Linear layer: multiply
W input tensor by weights and add bias.
10 Args:
1 X: input tensor
Returns:

y: output tensor

W

3

B) Forward pass.

10of8

B) Your code goes here.

END OF YOUR CODE

return y

. Question (4pts) Implement the backward passes

for the ReLU and Sigmoid non-linearities. The
non-linearities are defined as follows:

ReLU(x) = max(0,x)

. ; .
SIng]d (X) = m

You may use elementary operations from Py-
Torch library only, i.e. no predefined layers from
torch.nn. Sub-questions:

A) ReLU backward (2pts)
B) Sigmoid backward (2pts)

1 import torch

class RelU(object):

wan

RelU non-linear activation function.

nun

def __init._(self):
super(ReLU, self).__init__()

Cache forward pass variables for use
during backward pass.

self.cache = None
def forward(self, x):
Forward pass of RelLU non-linear
activation function: y=max(0,x). Store
input tensor as cache variable.
Args:
X: input tensor
Returns:
y: output tensor
y = torch.clamp(x, min=0) # forward pass
self.cache = y # update cache
return y
def backward(self, dupstream):

Backward pass of RelLlU non-linear
activation function: return downstream
gradient dx.
Args:
dupstream: Gradient of loss with
respect to output of this layer.
Returns:
dx: Gradient of loss with respect to
input of this layer.

Exam

- CS4240 Deep Learning - TU Delft

13 April 2022 - 09:00—12:00 - X - Sports Hall 3

Making sure that we don't modify the
incoming upstream gradient
dupstream = dupstream.clone()

A) RelLU Backward pass

A) Your code goes here.

END OF YOUR CODE

return dx

; class Sigmoid(object):

W

Sigmoid non-linear activation function.

nun

def

def

def

__init__(self):
super(Sigmoid, self).__init__()

Cache forward pass variables for use
during backward pass.
self.cache = None

forward(self, x):
Forward pass of Sigmoid non-linear
activation function: y=1/(1+exp(-x)).
Store input tensor as cache variable.
Args:

x: input tensor
Returns:

y: output tensor

W

y =1.0 / (1.0 + torch.exp(-x))
self.cache = y # update cache

return y

backward(self, dupstream):

Backward pass of Sigmoid non-linear
activation function: return downstream
gradient dx.

Args:
dupstream: Gradient of loss with
respect to output of this layer.

Returns:
dx: Gradient of loss with respect to
input of this layer.

wnm

B) Sigmoid Backward pass

B) Your code goes here

END OF YOUR CODE

return dx

Question (6pts) Implement the forward pass of
a convolutional layer. You may use elementary
operations from PyTorch library only, i.e. no pre-

20f8

defined layers from torch.nn. Sub-questions:

A) Placeholder for weight and bias (1pt)
B) The corresponding input window (2pts)

C) Forward pass for batch, in for loop (3pts)

iy import torch
2 class Conv2d(object):

2D convolutional layer.

wun

def __init__(self, in_channels, out_channels,
kernel_size, stride=1, padding=0):

nnn

Initialize the layer with given params
Args:
in_channels: num. of input channels
out_channels: num. of output channels
kernel _size: kernel size, single int
stride: step size of conv. operation
padding: num pixels to zero-pad input

self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding

A) Create placeholder tensors for
weight and bias with correct dims.

A) Your code goes here.

END OF YOUR CODE

FRTETIRTOTE e

Initialize parameters
self.init_params()

def init_params(self):

Initialize layer parameters. Sample
weight from Gaussian distribution
and initialize bias as zeros.

Hun

self.weight = torch.randn_like(
self.weight)
self.bias = torch.rand_like(self.bias)

def forward(self, x):

Forward pass of convolutional layer

Args:
x: input tensor (N, C, H, W)

Returns:
y: output tensor (N, F, H', W),
where:
H' =1+ (H+ 2 = padding -
kernel_size) / stride
W =1+ (W+ 2 = padding -
kernel _size) / stride

R

Pad the input
x_padded = torch.nn.functional.pad(

Exam - CS4240 Deep Learning - TU Delft

13 April 2022 - 09:00—12:00 - X - Sports Hall 3

4,

x, [self.padding] = 4)

Unpack the needed dimensions
N, _, H, W = x.shape

Calculate output height and width

Hp =1+ (H + 2 % self.padding -
self.kernel_size) // self.stride

Wp =1+ (W+ 2 % self.padding -
self.kernel_size) // self.stride

Create an empty output to fill in
y = torch.empty(
(N, self.out_channels, Hp, Wp))

B-C) Compute the output y by looping
over its height and width dimensions
and defining an input window over x
called window, using which you
calculate the output for each input
sample by convolving it with the
weight and adding a bias.

TR TR

for i 'in range(Hp):
for j in range(Wp):
B) Make window.
Your code goes here.
for k in range(N):
C) Forward pass.
Your code goes here.

END OF YOUR CODE
b R e R s s

Cache input to use in backward pass
self.cache = x_padded

return y

Question (4pts) Implement the gradient update
of SGD with momentum. The formula for a gra-
dient update with momentum is:

v =pri-1+ (1= p)Ve
6, =0- €V

i def momentum(X, rho, learning_rate, prev_value,

Grad=Grad_f) :
wun
Gradient descent with momentum optimization
step.
Args:
X: Current value of objective function.
rho: Optimization hyperparameter -
see formula above.
learning_rate: Optimization step size.
prev_value: Momentum parameter from
previous iteration.
Grad: Function that returns gradient
of objective function.
W
Gradient of current value
gradient = Grad(=*X)
Momentum parameter
v=_0
Momentum parameter from previous iteration
v_prev = prev_value

SRR

30f8

A) Create gradient descent with
momentum: update v and X.

A) Your code goes here

END OF YOUR COD£

return X, v

5. Question (4pts) Implement the Dropout

layers and the forward pass of the net-
work architecture depicted in the fig-
ure (fc := fully connected layer; DO:=
dropout' merging of arrows := summation):

(e o) { e Hrao).
Do }—d HReLU H—[DO | -

Sub-questions:

A) Initialize Dropout layers (1pts)
B) Iini)lement forward pass (3pts)

import torch.nn as nn

: class FCNet_do(nn.Module):

wiun

Simple fully connected neural network with
residual connections and dropout

layers in PyTorch, Layers are defined in
__ipnit__ and forward pass

implemented in forward.

def __init. (self).:
super(FCNet_do, self).__init__()

self.fcl nn.Linear(16, 32)
self.fc2 = nn.Linear(32, 32)
self.fc3 = nn.Linear(32, 64)

[}

END OF YOUR CODE

def forward(self, x):
AR AR R R R e R e e
B) Implement forward pass as in figure

B)Your code goes here

END OF YOUR CODE
SRR B R S R s e
return y

6. Question (4pts) Implement the vanilla RNN.

[Hint]: think about all the architectural hyperpa-
rameters and especially sizes of the input, hidden
states, weights and outputs. Sub-questions:

A) Parameter initialization (2pts)

B) Forward pass implementation (2pts)

. class VanillaRNN(nn.Module):

Exam - C54240 Deep Learning - TU Delft

13 April 2022 - 09:00—12:00 - X - Sports Hall 3

Vanilla recurrent neural network which
has the following update rule:
ht = tanh{W xh * xt + b_xh + W hh *
h{t-1) + b_hh)
def __init__(self, input size, hidden_size):
super(VanillaRNN, self).__init__()

self.hidden_size = hidden_size

IR SRR R
A) Create weight and bias tensors

with correct sizes. NOTE: Don't

forget to encapsulate weights and

biases in nn.Parameter.

A) Finish the following lines
self.weight_xh = # input-to-hidden w
self.weight_hh = # hidden-to-hidden w
self.bias_xh = # input-to-hidden b
self.bias_hh = # hidden-to-hidden b

END OF YOUR CODE

def forward(self, x):
Args:
x: input with shape (N, T, D):
N: number of samples
T: number of time steps

D: input size, equal to i

self.input_size.
Returns:
y: output with shape (N, T, H):
H: hidden size

Wun

Transpose input for efficient 1

vectorized calculation. After 12
transposing # the input will have 13

shape (T, N, D).

x = x.transpose(0, 1) 15

Unpack dimensions 17
T, N = x.shape[0], x.shape[l] I

Initialize hidden states to zero.
h@ = torch.zeros(N, self.hidden_size)

Define a list to store outputs.
y =[]

AR R A R R A S R e B R
B) Implement the RNN forward pass

B) Your code goes here.

HHAH ? I 50

OF YOUR CODE

SRR R R R e e 52

Stack outputs to shape (T, N, H)
y = torch.stack(y)

Switch time and batch dimension
4T, N, HYy =5 N T, H)
y = y.transpose(0, 1)

return y

4 0of 8

Question (6pts) Implement the basic self-
attention layer in PyTorch. Recall that the in-
put serve three different purposes in the self-
attention operation, namely as the query, key
and value:

ki = Wix;,

q; — WQX@;, Vi = Wyxz-

And the basic self-attention operation:

Ty .
= I

ij \/?E y Wij
Yi= Z WijVj
J

softmax (wy;) ,

Sub-questions:

A) Transforminput tensor to queries, keys and
values (2pts)

B) Compute weights, scale weights, apply
- softmax (2pts)

C) Compute output tensor (2pts)

import torch.nn as nn

. class SelfAttention(nn.Module):

wnn

Self-attention operation with learnable key,
query and value embeddings.
Args:
d: embedding dimension
def __init__(self, k):
super(SelfAttention, self).__init__()

Linear map to queries, keys, values
self.k = nn.Linear(d, d, bias=False)
self.q = nn.Linear(d, d, bias=False)
self.v = nn.Linear(d, d, bias=False)

def forward(self, x):

Get tensor dimensions: batch size,
sequence length and embedding

dimension.

b, t, d = x.size()

A) Perform self-attention operation
with learnable query, key and value
mappings.

B) Calculate w_prime, apply scaling
and softmax.

C) Compute the output tensor y.

PRI e

Your code goes here.

END OF YOUR CODE
B R e S i

return y

Exam - CS4240 Deep Learning - TU Delft

13 April 2022 - 09:00—12:00 - X - Sports Hall 3

8. Question (6pts) Implement the auto-encoder.
The whole auto-encoder is implemented in the
code block below, which consists of 3 classes: En-
coder, Decoder and Autoencoder. Sub-questions:

A) Create necessary layers for Encoder (2pts)
B) Finish forward pass of Encoder (1pts)
C) Implement forward pass of Decoder (2pts)

D) Implement forward pass of Autoencoder
(1pts)

1 import torch.nn as nn

. class Encoder(nn.Module):

] Encoder, projects input to latent space.

5 Args:
1_dim: latent space dimensionality (int)
s_img: size of square input image (int)

8 h.dim: dim. of hidden layers (list)

| def __init__(self, 1.dim, s_img, h_dim):

1 super(Encoder, self).__init__()

A) Create the necessary layers

A) Your code goes here.

15 # END OF YOUR CODE

def forward(self, x):

>
I

= torch.flatten(x, start_dim=1)
self.relu(self.linearl(x))
self.relu(self.linear2(x))

X X
non

B) Apply final layer of the encoder
[Hint]: do you need a non-linearity?

B) Your code goes here.

3 # END OF YOUR CODE

return x

.« class Decoder{nn.Module):
n Decoder, projects latent space to image.
Args:

™ 1.dim: latent space dimensionality (int)
s_img: size of square input image (int)
h_dim: dim. of hidden layers (list)

i def __init__(self, l_dim, s_img, h_dim):

5 super(Decoder, self)._ _init__()

self.linearl = nn.Linear(l_dim,
h_dim[1])

self.linear2 = nn.Linear(h_dim[1],
h_dim[©0])

nn.Linear(h_dim[@],
s_img*s_img)

self.relu = nn.ReLU()

self.sigmoid = nn.Sigmoid()

! self.linear3

def forward(self, z):

50f8

C) Implement forward pass of decoder
[Hint]: Have a close look at the
forward pass of the encoder.

64 # C) Your code goes here.

68 # END OF YOUR CODE

71 return z

-+ class Autoencoder(nn.Module):
Autoencoder model.
Args:
1.dim: latent space dimensionality (int)
4 s_img: size of square input image (int)
7y h_dim: dim. of hidden layers {list)
sl def __init__(self, 1.dim, s_img,
h_dim = [256, 128]):
super(Autoencoder, self)._ _init__()

‘self.encoder = Encoder(l_dim, s_img,

h_dim)
self.decoder = Decoder(l_dim, s_img,
h_dim)
a5 def forward(self, x):

D) Autoencoder forward pass.

73 # D) Your code goes here.

END OF YOUR CODE

return y

Exam - C§4240 Deep Learning - TU Delft 13 April 2022 - 09:00—12:00 - X - Sports Hall 3

2 Lectures (38pt) 3. Question (6pts) We would like to perform a con-
volution on an 5 x 5 x 2 image (ie: 2 channels,

1. Question (4pts) Consider a 2-layered network. so 2 values per pixel) with an “average value ker-

The first layer is convolutional with a kernel size
of 3 x 3, with padding = 1, stride = 1. The sec-
ond layer is a fully connected layer. The num-
ber of input channels is 3, the number of hidden
channels is 5. The amount of output features is
2. The network uses bias terms. The size of an
input image is: h x w = 16 % 16. The image be-
low clarifies the network further. What is the
total amount of learnable parameters? Mo-
tivate your answer with a detailed step-by-step
approach. (Don’t forget the bias terms).

I

. i vectorization fully-connected
v

2. Question (6pts) Consider the following scalar

feedforward neural network with input z and
target y.

W,

L = (a2-y)?andR = >, w? are the loss
and regularization term respectively and the reg-
ularized loss is computed as Leg = L + AR,
in which A is some predefined weighting hyper-
parameter. Furthermore the activations a, are
computed as

a; =0 (21‘) =0 {’w,;a;‘_l + bi) s

in which o is some arbitrary continuously dif-
ferentiable non-linear activation function (e.g.
sigmoid, tanh). We are interested in comput-

e AL,y OLreg
ing 8610] . We have already computed o

Ly . s S Eh - o
and et for which we used z3 = v 7 Ef

ficient backpropagation uses this intermediate
result for the computation of gradients of earlier
layers. Compute a;‘;)’;-" based on this result. Mo-
tivate your answer (do not only write down the
formula). If needed, use o’() for the derivative

of the non-linear activation function.

60f 8

nel with horizontal and vertical spatial size 3” (no
padding) and a stride of 1. The value of the input
image X is given below:

1o 50 2i 6 4
0 21 9 5
Kigall=a'd o1 0. di
GEAR O s Lt 3
-4 -2 0 3 -2
[0 =2 1 =2 2
-3 0 -2 3 2
Xedl=]l1 =2 <2 2 2
0 4 4 -1 -1
2 2 0 3 =2

(2pt) 1. Give the kernel matrix.
(4pt) 2. Compute output of the convolution.

- Question (4pts) About regularization.

(1pt) 1. What is underfitting?

(1pt) 2. What is overfitting?

(1pt) 3. How to detect underfitting?
(1pt) 4. How to detect overfitting?

- Question (6pts) The exponentially weighted

moving average (EWMA) is used in many op-
timization methods. The equation is given by:
St = (pSe-1) + (1 - p)ye.

Consider a case where the gradient has a con-
stant value of 1.0, over all considered training
samples. Let p = 0.95.

(2pt) 1. Compute 9.

The bias correction equation is: 5; = lf—:o,_.

(2pt) 2. Compute the bias corrected Ss.
(1pt) 3. What is the goal of bias correction?

(1pt) 4. What role does bias correction play after
a large number of iterations?

. Question (4pts) Can you explain why vanish-

ing/exploding gradients happen in RNNs? What
changes can be made to RNNs to solve these
problems?

. Question (4pts) Regarding self-attention.

(1pt) 1. What is the computational advantage of
self-attention over recurrent networks?

(1pt) 2. What is the purpose of having multiple
attention heads?

(1pt) 3. What is the difference between narrow
and wide multi-head self-attention?

(1pt) 4. How does the number of parameters in a
self-attention layer change if the input sequence
length doubles?

Exam - CS4240 Deep Learning - TU Delft

13 April 2022 - 09:00—12:00 - X - Sports Hall 3

8. Question (4pts) Explain the GAN objective
function given below:

arg min max Eznpi log Dy, (z)
D

e
+]Ezrvp(z) lOg (1 et DGD (Ge(; (z)))

3 Papers (14pts)

Each paper has a multiple-choice question. Select the
single best fitting answer per question. Each question
counts for 1 point.

1. Paper: A Step Toward Quantifying Independently
Reproducible Machine Learning Research. What
statement is mentioned in the paper:

A) Without releasing code it is very difficult to
reproduce ML research,

B) Code should be reviewed in the scientific
peer-review process.

C) Its OK if approximately 25% of the claims
in a paper cannot be reproduced.

D) Reproducability should become part of uni-
versity courses.

2. Paper: Troubling Trends in Machine Learning
Scholarship. The paper mentions “Explanation
vs. Speculation”. What exactly is meant by that?

A) Papers are intentionally made overly com-
plex.

B) There is too much math

C) There is not sufficient explanation for some
claims

D) The method is not explained.

3. Paper: Do ImageNet Classifiers Generalize to Im-
ageNet? So, do they generalize?

A) Yes, although the accuracy is reduced, the
ranking between models stays the same

B) Yes, because it showed to generalize to
other, slightly changed, domains.

C) No, because the technical term "generaliza-
tion" only applies to the original data

D) No, because there was insufficient data

4. Paper: Scaling down deep learning. According to
the paper, why scale down?

A) Complex models are too difficult to inter-
pret

B) Results on small-scale datasets often trans-
late to large-scale datasets

C) Scaling down is the only option for smaller
labs and universities

7 of 8

D) Scaling down is essential for scientific re-
productions

5. Paper: Highway and Residual Networks learn Un-

rolled Iterative Estimation. What best describes a
residual connection?

A) Add the output of the previous layer to the
input of the current layer

B) Add the output of the previous layer to the
output of the current layer

C) Add the input of the previous layer to the
output of the current layer

D) Add the input of the previous layer to the
input of the current layer

6. Paper: ResNet strikes back: An improved training

procedure in timm .

A) An independent reproduction of a standard
ResNet with an improved training proce-
dure improves over the original paper

B) Anindependent reproduction of a modified
ResNet with an improved training proce-
dure improves over the original paper

C) Anindependent reproduction of a standard
ResNet with an improved training proce-
dure cannot improve over the original pa-

per
D) Anindependent reproduction of a modified
ResNet with an improved training proce-
dure cannot improve over the original pa-

per

7. Paper: Deep Image Prior. What statement fits

best with the paper:

A) Neural network architectures are a form of
prior knowledge

B) ConvNets are a form of prior knowledge for
images

C) Optimization is less important as the net-
work architecture

D) ConvNets can learn to turn noise to images

8. Paper: Approximating CNNs with Bag-of-local-

Features models works surprisingly well on Ima-
geNet. Why is it called a BagNet?

A) Its based on unordered bagging and boost-
ing bootstrapping

B) The receptive field is artificially unordered

C) The class evidence used for explainability
is bagged across unordered classes

D) It treats images as a unordered bag of
patches

Exam - CS4240 Deep Learning - TU Delft

13 April 2022 - 09:00—12:00 - X - Sports Hall 3

9. Paper: Group Normalization. The statistics are
computed over groups of pixels. The grouping is
done by:

A) Grouping spatially

B) Grouping feature maps
C) Grouping images

D) Grouping weights

10. Paper: Torch.manual_seed(3407) is all you need:
On the influence of random seeds in deep learning
architectures for computer vision.

A) Black swans can be found, although the
variance is small

B) Black swans cannot be found because the
variance is small

C) Black swans can be found as the variance is
large

D) Black swans cannot be found, although the
variance is large

11. Paper: Attention Is All You Need. Select the best
answer.

A) The query, key and value are shared over
the inputs, similar to a 1x1 CNN

B) The connections between the network lay-
ers are gated, similar to a GRU

C) In a self-attention layer, information flows
sequentially between tokens, similar to an
LSTM.

8 of 8

D) Without positional embeddings, it would
overfit on the word position, similar to a
MLP.

12. Paper: Perceiver I0: A General Architecture for
Structured Inputs & Outputs.

A) Uses standard self-attention, and it is out-
performed by specialized solutions

B) Uses a special form of self-attention, and it
is outperformed by specialized solutions

C) Uses standard self-attention and it outper-
forms specialized solutions

D) Uses a special form of self-attention and it
outperforms specialized solutions

13. Paper: Unpaired Image-to-Image Translation us-
ing Cycle-Consistent Adversarial Networks. What
does the "cycle" refer to?

A) Cyclic activation functions

B) Training cycles

C) Cycling between the annotated image pairs
D) Cycling between domains

14. Paper: GANORCON: Are Generative Models Use-
ful for Few-shot Segmentation? So, are GANs use-
ful for few-show segmentation?

A) Yes, more useful than contrastive learning.

B) Yes, but not as useful as contrastive learn-
ing

C) No, but contrastive learning is

D) No, and contrastive learning also is not

