Resit - CS54240 Deep Learning - TU Delft

21 June 2022 - 13:30—16:30

Closed book exam, no books, papers, notes, phones etc. allowed. The exam has 8 coding questions (labs),
8 open questions (lectures) and 14 multiple choice questions (papers). Answer on the separate answer
sheets. Explain all answers, i.e. explicitly show intermediate steps to clarify if needed for coding /

calculations / motivations / etc. Good luck!

We scan and crop answer boxes; please do not write outside answer boxes.

1 Lab assignments (38pts)

1. Question (4pts) Implement the forward pass of a
shallow network with an input layer, one hidden
layer, followed by a Sigmoid activation function.
The forward pass equations are given below:

h=xW; +by
y =hW; + bz
y = Sigmoid(y)
Reminder:
Sigmoid(x) = ATER
- 1+ exp(—x)

Here x has dimensions [batch_size, in-
put_channels] and h has dimensions
[batch_size, hidden dims] . Use the code tem-
plate provided below. You may use elementary
operations from the PyTorch library only, i.e. no
predefined layers from torch.nn. Sub-questions:

A) Placeholder for layer weight and bias (2pts)
B) Forward pass (2pts)

1 import torch
: class ShallowNet(object):
Args:
in_feat: number of input features
hidden.dims: number of hidden neurons
out_feat: number of output features

def __init__(self, in_feat, out_feat):
super(Linear, self).__init__{()

A) Your code goes here.

SRR TS

HHHH

self.init_params() # Init. parameters

def init_params(self):

self.weight_1 = torch.randn_like(
self.weight_1)

self.bias_1 = torch.rand_like(
self.bias 1)

self.weight_2 = torch.randn_like(
self.weight_2)

self.bias_2 = torch.rand_like(
self.bias_2)

def forward(self, x):

Your code goes here.

T TR TR

return y

1of7

2. Question (4pts) Implement the backward passes

for the LeakyReLU and Tanh non-linearities. The
non-linearities are defined as follows:

LeakyReLU(x) = max(0.01x, x)

_ exp(x) — exp(—x)
fanbo): exp(x) + exp(—x)

You may use elementary operations from Py-
Torch library only, i.e. no predefined layers from
torch.nn. Sub-questions:

A) LeakyReLU backward (2pts)
B) Tanh backward (2pts)

1 import torch
: class LeakyReLU(object):

def __init__(self):
super (LeakyRelLU, self).__init ()
self.cache = None

def forward(self, x):
y = torch.clamp(x, min=0.01xx)
self.cache = y
return y

de

—h

backward(self, dupstream):

dupstream = dupstream.clone()
BRI R AR R
A) Your code goes here.

B e e R g e g e i
return dx

1 class Tanh(object):

def __init__(self):
super(Tanh, self).__init__()
self.cache = None

def forward(self, x):
y = (torch.exp(x) - torch.exp(-x))
/(torch.exp(x) + torch.exp(-x))
self.cache = y
return y

def backward(self, dupstream):
e e e e S e
B) Your code goes here
B i s S e s S e i
return dx

3. Question (6pts) Implement the following pool-

ing methods for 2D inputs: You may use elemen-
tary operations from PyTorch library only, i.e. no
predefined layers from torch.nn. Sub-questions:

A) Max Pooling (3pts)
B) Average Pooling (3pts)

Resit - C54240 Deep Learning - TU Delft

21 June 2022 - 13:30—16:30

import torch
: class MaxPool2d(ocbject):

] def __init__(self, kernel_size, stride=1,
padding=0):
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding

def forward(self, x):

wan

Args:
x: input tensor with shape of (N, C

H, W)
Returns:
y: output tensor with shape of (N, C
, H', W) where
H' =1+ (H + 2 * padding -
kernel_size) / stride
1 W' =1+ (W+ 2 % padding -
kernel.size) / stride
Pad the input
x_padded = torch.nn.functional.pad(x, [
self.padding] * 4)
Unpack the needed dimensions
N, C, H, W = x.shape
KS = self.kernel_size
Calculate output height and width
Hp =1+ (H + 2 * self.padding - KS) //
self.stride
Wp =1+ (W+ 2 » self.padding - KS) //
self.stride
Create an empty output to fill in.
We combine first and second dim to
speed up as we need no loop for each
channel.
y = torch.empty((N=C, Hp, Wp), dtype=x.
dtype, device=x.device)

n B s i e s
A) Your Code Here
B e s i i s s

Reshape output to seperate sample dim
from channel dim since we

combined them

y = y.reshape(N, C, Hp, Wp)

Cache padded input to use in backward
pass
self.cache = x

return y
class AveragePool2d(object):

def __init__(self, kernel_size, stride=1,
padding=0):
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding

def forward(self, x):
Args:
x: input tensor with shape of (N, C,
H, W)

Returns:
y: output tensor with shape of (N, C
, H', W) where
H' = 1 + (H + 2 % padding -

20f7

kernel _size) / stride
W =14+ (W+ 2 * padding -
kernel_size) / stride

nouw

Pad the input
ot Xx_padded = torch.nn,functional.pad(x, [
self.padding] * 4)

Unpack the needed dimensions
N, C, H, W = x.shape
KS = self.kernel_size

Calculate output height and width

Hp =1+ (H + 2 * self.padding - KS) //
self.stride

Wp =1+ (W+ 2 % self.padding - KS) //
self.stride

74 # Create an empty output to fill in.
We combine first and second dim to
speed up as we need no loop for each
«channel.
y = torch.empty((N+C, Hp, Wp), dtype=x.
‘dtype, device=x.device)

HHHEHE R R R
B) Your Code Here

Reshape output to seperate sample dim
from channel dim since we

combined them

y = y.reshape(N, C, Hp, Wp)

Cache padded input to use in backward
pass

self.cache = x

return y

4. Question (4pts) Implement the gradient update
of the Adam optimizer, given by:

V4 :P1Uz'y1+(l—;31)vew
Ao Uy
W =—7
i
ri = pari—1 + (1 — p2) V3
. T
N ==
1-p}
0 =6

Ui
—
Velis +6'\1 JffLa

 def adam(X, rhos, learning_rate, prev_values,
index, Grad=Grad_f):
Adam optimization step.
1 Args:
X: Current value of objective function.
rhos: Optimization hyperparameter - see
formula above.
learning.rate: Optimization step size.
prev._value: Momentum parameter from
previous iteration.
index: Optimization step counter.
Grad: Gradient of quadratic function.

Resit - C54240 Deep Learning - TU Delft

21 June 2022 - 13:30—16:30

delta = le-5

to prevent division by zero
gradient = Grad(*X)

current values

rho_v, rho_r = rhos # Rho values
for momentum & rmsProp part of Adam
v_prev, r_prev = prev_values # Adam
parameters from previous iterations

Tiny amount

Gradient of

v=r=20 # Adam
paramters for momentum & rmsProp
v_bc = r.bc =B # Bias

corrected adam parameters

T T WA T ST ST ST S TR R ST

TODO: Create gradient update
#with Adam: update v, v.bc, r, r.bc #

#and X. #
G i s e e
Your Code Here
PP S I

return X, (v,r)

5. Question (4pts) Implement the following regu-
larization methods:

» L2 Regularization

» Early Stopping

1 def train_wd(train_loader, net, optimizer,
criterion, wd):
Args:
train_loader: Data loader.
net: Neural network model.
optimizer: Optimizer (e.g. SGD).
criterion: Loss function
wd: Weight decay (L2 penalty)

avg_loss = 0
correct = 0
total = @

for i, data in enumerate(train.loader):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)

i lia i 3 Hi
A) Your Code Here
A A A B A

loss.backward()

optimizer.step()

avg_loss += loss

_, predicted = torch.max(outputs.data,

1)

total += labels.size(0)

correct += (predicted == labels).sum().
item()

return avg_loss/len(train_loader), 100 x
correct / total

HHEEHEHHEARLY STOPPING####1#HH#
+ net = FCNet()
» criterion = nn.CrossEntropyLoss()

3o0f7

optimizer = optim.SGD(net.parameters(), lr=5e-1,
weight_decay=3e-3)

: # Set the number of epochs to for training

epochs = 100

: # Patience - how many epochs to keep training

after accuracy has not improved

patience = 0

« # Initialize early stopping variables
s val_acc_best = 0

patience_cnt = 0

. for epoch in tgdm(range(epochs)): # loop over

the dataset multiple times

train_loss, train_acc = train(train_loader,
net,optimizer,criterion)

val_loss, val_acc = test(val_loader,net,
criterion)

writer.add_scalars("Loss", {'Train’:
train_loss, 'Val’: val_loss}, epoch)
writer.add_scalars(’Accuracy’, {'Train’:
train_acc, 'val’: val_acc}, epoch)

TN R R TR TN U TN R TW R TR ST I

B) Your Code Here

TR

. Question (6pts) Implement the GRU. [Hint):

think about all the architectural hyperparame-
ters and especially sizes of the input, hidden
states, weights and outputs.

The update rule is given as:
e — U(erl't + by + Whrh(t = 1) = bh.r)
2y = U(Wa:zl't + bgz + thh(t i l) I bh.z)
ny = tanh(Wena; + ban + 10 © (Wanh(t — 1) + bpy))
ht = (1—2’:)®ﬂt+2t®h(t—l)
Sub-questions:
A) Parameter initialization (2pts)

B) Forward pass implementation (4pts)

. class GRU(nn.Module):

def __init__(self, input_size, hidden_size):
super(GRU, self).__init__()
self.hidden_size = hidden_size
self.weight_xh = None
self.weight_hh = None
self.bias_xh = None
self.bias_hh = None

YOUR CODE HERE

Initialize parameters
self.reset_params()

def reset_params(self):
std = 1.0 / math.sqrt(self.hidden_size)
self.weight_xh.data.uniform (-std, std)
self.weight_hh.data.uniform_(-std, std)
self.bias_xh.data.uniform (-std, std)
self.bias_hh.data.uniform_(-std, std)

Resit - CS4240 Deep Learning - TU Delft

21 June 2022 - 13:30—16:30

def forward(self, x):
Args:
x: input with shape (N, T, D)
where N is number of samples,
T is number of timestep and
D is input size which must be equal
to self.input_size.

Returns:
y: output with a shape of (N, T, H)
where H is hidden size

R

Transpose input for efficient
vectorized calculation. After transposing
the input will have shape(T, N, D).

X = X.transpose(0, 1)

T, N, H = x.shape[0], x.shape[l], self.
hidden_size

h@ = torch.zeros(N, H, device=x.device)

Define a list to store outputs. We
will then stack them.
i B

B s S S s & i
TODO: Implement GRU forward pass

T TR,

Stack the outputs. After this
operation, output will have.shape of

(T, N, H)

y = torch.stack(y)

Switch time and batch dimension, (T, N
oiHY A= AN)

y = y.transpose(0, 1)

return y

7. Question (4pts) The transformer block consists

of a self-attention layer, followed by layer norm,
a MLP applied on each vector individually and
another layer norm. Note the residual connec-
tions in the self-attention and MLP layer. The
architecture is given below:

it transformer block outpat

Now implement the transformer block as a Py-
Torchlayer. All different components are already
defined in init function - your task is to connect
them in the proper way in the forward method.
Ima Sub-questions:

A) Perform the forward pass of a transformer
block as depicted in the image.

i import torch.nn as nn
. class TransformerBlock(nn.Module):
def __init__(self, k, heads):

Woan

Args:

4 0of 7

8.

k: embedding dimension
heads: number of heads (k mod heads
must be 8)

super(TransformerBlock, self).__init__()

self.att = MultiHeadAttention(k, heads=
heads)
self.norml = nn.LayerNorm(k)
self.ff = nn.Sequential(
nn.Linear(k, 4 * k),
nn.ReLU(),
nn.Linear(4 = k, k))
self.norm2 = nn.LayerNorm(k)

def forward(self, x):

Args:

x: input with shape of (b, k)
Returns:

y: output with shape of (b, k)

B e S s e i
T0D0: Perform the forward
pass of a transformer block#
as depicted in the image.
R
return Yy

Question (6pts) Implement a Variational Auto-
encoder (VAE) for the following code block.

« KL Loss (2pt)

« Reparametrization (2pt)

« Forward function: creating mean and vari-
ance (2pt)

#encoder

. class VarEncoder(nn.Module):

def __init__(self, latent_dims, s_img, hdim)
super(VarEncoder, self).__init_ ()

#layers for gl

self.linearl_1 = nn.Linear(s_img*s_img,
hdim[@])

self.linear2_1
[11)

self.linear3._1
latent_dims)

nn.Linear(hdim[®], hdim

nn.Linear(hdim[1]

#layers for g2

self.linearl 2 = nn.Linear(s_img#s_img,
hdim[©])

self.linear2_2
[1])

self.linear3 2
latent_dims)

nn.Linear(hdim[@], hdim

nn.Linear(hdim[1],

self.relu = nn.ReLU()

#distribution setup

self.N = torch.distributions.Normal(@,
1)

self.N.loc = self.N.loc.to(try_gpu()) #
hack to get sampling on the GPU

self.N.scale = self.N.scale.to(try_gpu()
)

self.kl = @

ey T

Resit - CS4240 Deep Learning - TU Delft

21 June 2022 - 13:30—16:30

TODO: Define function for:
A) the Kullback-Leibner
loss "kull_leib"

B) the Reparameterization trick
B e R G G e
Your code here

FIRTRTOTa e £ A0S 010 g a4t a TSR R TSR TS

def forward(self, x):

Bal AL R s e
TODO: Create mean and variance

T T N TR R TR TR N TR T o T

C) Forward Function your code here
B R s e e e

#reparameterize to find z
z = self.reparameterize(mu, sig)

#loss between N(8,I) and learned
distribution
self.kl = self.kull_leib(mu, sig)

return z

«» #decoder: same as before

: #autoencoder

; class VarAutoencoder(nn.Module):
def __init__(self, latent dims, s_img, hdim
= [100, 50]):

super(VarAutoencoder, self).__init__()

self.encoder = VarEncoder(latent_dims,
s_img, hdim)

self.decoder = Decoder(latent_dims,
s_img, hdim)

def forward(self, x):

z self.encoder(x)

self.decoder(z)

return y

2 Lectures (38pt)

1. Question (4pts) Consider a 2-layered network.

The first layer is convolutional with a kernel size
of 5 x 5, with padding = 1, stride = 2. The sec-
ond layer is a fully connected layer. The num-
ber of input channels is 3, the number of hidden
channels is 7. The number of output features is
2. The network uses bias terms. The size of an
input image is: h x w = 12 x 12. The image be-
low clarifies the network further. What is the
total number of learnable parameters? Mo-
tivate your answer with a detailed step-by-step
approach. (Don’t forget the bias terms).

50f7

Input

,IIIII comeution vcortatin | fbycomnecea
h|
'

e

. Question (6pts) Calculate MLE (Maximum Like-

lihood Estimator) for a Possion distribution.

Consider that we are given a Poisson probability
distribution given by:

AZe= 2

Prodel(X =z) = P

We draw m samples from the probability distri-
bution namely : {x1, s ...z, }. The objective is
to find the maximum likelihood estimate for the
parameter)\ as a function of the data samples.

Sub-questions:

1) (1pt) Write the likelihood function for the
given probability distribution.

2) (2pt) Write the log-likelihood function by us-
ing the logarithm operator on the function ob-
tained in the previous step. Make sure to sim-
plify the terms as much as possible.

3) (2pt) Calculate the derivative of the natural log
likelihood function with respect to A

4) (1pt) Set the derivative equal to zero and solve
for A

Hint: use the log-likelihood, defined as

m
MLE(X) = arg max [] log Prodgei(z:,6)

i=1

where X = {z;...zn}

. Question (6pts)

Calculate the receptive field of a feature/pixel in
the output of the architecture given by the table
below. Provide a step-by-step explanation.

Note: the receptive field here refers to the num-
ber of pixels in the input image that a particular
feature ("pixel") in the output of Conv4 is looking
at, i.e. the answer should be a single integer.

Layer | Kernel size | Stride
Convl
Pool1
Conv2
Pool2
Conv3
Conv4

Wl W N W
oo = e =

Resit - C54240 Deep Learning - TU Delft

21 June 2022 - 13:30—16:30

4. (4pts) Question What is batch normalization
and how do you apply it during test time (e.g.
batch size = 1)?

1. Clearly explain batch normalization, includ-
ing formulas. (2pts)

2. Clearly explain how it is applied during test
time. (2pts)

5. Question (4pts) About regularization.
1. Draw the learning curve for overfitting. (1pt)
2. Name and explain one type of parameter norm
regularization (include its equation). (1pt)
3. How is dropout performed? Explain both
training and evaluation. (2pt)

6. Question (6pts) Long Short Term Memory
(LSTM).
Using equations, explain the working of the
LSTM, i.e. current hidden state based on the
current memory cell state (C;), previous hidden
state (h¢—1) and the current input (X;).

010G -

Output
gats
0:
H,

1 Copy "'r"" Concalenate

Memory
(‘M

Hidden stale

Input X,

FC layer with
activation fuction

Elementwise
opsrator

1. Equation of the forget gate (f;). (1pt)

2. Equation of the input gate (i;). (1pt)

3. Equation of the candidate cell gate (c;). (2pt)
4. Equation of current hidden state (h;). (2pt)

7. Question(4pts) There are two types of posi-
tional information used in self-attention: embed-
dings or encodings.

1. Why do we need to explicitly include posi-
tional information in self-attention? (2pt)
2. What is the difference between positional em-
beddings and positional encodings? (2pt)

8. Question (4pts) Contractive auto-encoder.

1. What is an auto-encoders and what is it used
for? (2pt)

A contractive auto-encoder is given by

af () ||?

dx

ol (@))+ A

F

2. Explain the equation (terms, operators), and
its goal. (2pt)

3 Papers (14pts)
A 1pt multiple-choice question per paper. Select the
single best fitting answer per question.

1. Paper: A Step Toward Quantifying Independently
Reproducible Machine Learning Research. What
statemnent matches the paper best:

)| Releasing code is very important to repro-
duce ML research.

B) Looking at the released code by the authors
tends to improve reproduction quality.

C) Paper reproduction rates have not signifi-
cantly changed over the past 35 years

D) More equations tends to improve reproduc-
tion quality.

2. Paper: Troubling Trends in Machine Learning
Scholarship. The paper mentions “Failure to
identify the sources of empirical gains”. What
exactly is meant by that?

A) Gains come from using additional data in-
stead of the proposed method

B) Gains are not tested statistical for signifi-
cance

@' Gains come from hyper-parameter tuning
instead of the proposed method

D) Gains are tuned on the test set

3. Paper: Do ImageNet Classifiers Generalize to Im-
ageNet? What is their main motivation?

That repeated re-use of the test set leads to
overfitting

B) That the data collection procedure is not re-
producible

C) That the 1,000 ImageNet classes are too
specialized

D) That the concept of generalization is too
narrowly defined

4. Paper: Scaling down deep learning. What do they
scale down?

A) The number of layers
@The dataset

C) The weights in a layer

D) The training epochs

5. Paper: Highway and Residual Networks learn Un-
rolled Iterative Estimation. Whats the difference
between highway vs residual?

A) Highway simplifies the residual
/ @ Highway is a gated variant of Residual

6 of 7

Resit - CS4240 Deep Learning - TU Delft

21 June 2022 - 13:30—16:30

C) Residual is a different name for Highway
D) Residual is specially adapted for images

6. Paper: ResNet strikes back: An improved training
procedure in timm. What does the author hope to
achieve?

A) A better ResNet baseline

B) Better understanding of the ResNet

C) An improved ResNet architecture
Much faster training times

7. Paper: Deep Image Prior. What statement fits
best with the paper:

A)/Neural network optimizers are a form of
prior knowledge

)/ConvNets are useful for images, even with-
out training

C) Optimization is less important than the net-
work architecture

D) ConvNets can learn to denoise images

8. Paper: Approximating CNNs with Bag-of-local-
Features models works surprisingly well on Ima-
geNet. What statement best describes the paper?

A) Its based on shallow networks
B), The receptive field is artificially enlarged

C)/The class evidence used for explainability
is locally bagged

D) The receptive field is artificially reduced

9. Paper: Group Normalization. The statistics are
computed over groups of pixels. The grouping is
done by:

A) Grouping inside a single featuremap
B

@Grouping activations

C) Grouping parameters
D) Grouping residuals

10. Paper: Torch.manual_seed(3407) is all you need:
On the influence of random seeds in deep learn-
ing architectures for computer vision. What is the
author surprised about?

That with not very large variance its easy
to find an outlier that performs much better
or much worse than the average.

B) That even though the variance is small, that
the differences are still statistically signifi-
cant.

7o0f7

C) That the random seed plays such a big role
in finding the best results.

D) That the random seed influences so many
things (initialization, batch elements, gra-
dient steps, etc.) yet does account for so lit-
tle differences.

11. Paper: Attention Is All You Need. Select the best
answer.

A) For each token, the query, key and value
parameters are identical

B) The connections between the losses are
gated, similar to a GRU

C) One token is best seen as a set.

D)/Without positional embeddings, it would
exploit thel absolute token position, similar
to a MLP.

12. Paper: Perceiver I0: A General Architecture for
Structured Inputs & Outputs.

Uses standard self-attention, and it is out-
performed by specialized solutions

B) Uses a special form of self-attention, and it
is outperformed by specialized solutions

C) Uses standard self-attention and it outper-
forms specialized solutions

D) Uses a special form of self-attention and it
outperforms specialized solutions

13. Paper: Unpaired Image-to-Image Translation us-
ing Cycle-Consistent Adversarial Networks. What
does the "cycle" refer to?

A) Cyclic featuremap padding
B) Training data cycles

C) Cycling between two annotations of an im-
age

@ Cycling between domains

14. Paper: GANORCON: Are Generative Models Use-
ful for Few-shot Segmentation? So, are GANs use-
ful for few-show segmentation?

A) Yes, more useful than contrastive learning.

B) Yes, but not as useful as contrastive learn-
ing

C) No, but contrastive learning is

@No, and contrastive learning also is not

