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Endterm Reasoning and Logic (CSE1300)

Exam created by Stefan Hugtenburg & Neil Yorke-Smith

Please read the following information carefully!

e This exam consists of 16 multiple-choice questions and 9 open questions.

score — 0.25 % 0

0.75 %0 )
This accounts for a 25% guessing correction, corresponding to the four-choice questions we use.

e The points for the multiple-choice part of the exam are computed as 1 + 9 - max(0,

score
65
e The final grade for the exam is computed as: 0.4 - MC + 0.6 - Open.

e The grade for the open questions is computed as: 1+ 9 -

e This exam corresponds to all non-starred sections of the book: Delftse Foundations of Computation
(version 1.1).

e You have 3 hours to complete this exam.

e Before you hand in your answers, check that the sheet contains your name and student number, both
in the human and computer-readable formats.

e The use of the book, notes, calculators or other sources is strictly prohibited.

e Note that the order of the letters next to the boxes on your multiple-choice sheet may not always be
A-B-C-D! Tip: mark your answers on this exam first, and only after you are certain of your answers,
copy them to the multiple-choice answer form.

e Read every question properly and in the case of the open questions, give all information requested,
which should always include a brief explanation of your answer. Do not however give irrelevant infor-
mation — this could lead to a deduction of points.

e Note that the minimum score per (sub)question is 0 points.

e You may write on this exam paper and take it home.

e Exam is (©2019 TU Delft.

Question: | 17 | |18] | |19} | [20] | [21] | 22| | [23| | [24| | 25| | Total:
Points: 6 | 6| 5|96 10|56 |12 65

Open questions:
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Learning goals coverage, based on the objectives of all lectures (strongly paraphrased):

| Goal | et17 | mc18 | mt18 | et18 | ret18 | mc19 | mtl9 | etl9
translate logic to and from natural language 1,2 3.4 1 1 1-2,19-20 3,4 1
describe A,V,—,—, and <> operators 3
construct a truth table 3-5 1a,1b 31la 21a 4-5 la 9,21a
determine prop. logic equivalence 6,7,19 2 6-8 1b
rewrite logical connectives 8-10 31b 21c 9 1c 21b
describe contrapos, conv, and inv. 11,12 2 10 3
describe logic validity 13,14 3 11,12
describe sufficient and necessary conditions 15 4 13 2a
prove validty of argument in prop. logic 16-17 1b 3,21b 14
describe the principle of explosion 18 1c 15
explain why prop. logic is not suf. exp. 20 2b
describe V and 3 quantifiers 21 2c 5 19
evaluate negation stmt. in pred. logic 22 4 17-18
construct a Tarski's world 23-25 21-22 5b
construct a formal structure in pred. logic 26-27 2b 32a 22a 23 ba
evaluate claims about formal structures 28-29 2a 6,32b 22b 24 4
construct counterexamples for claims 30 2a,2b,5c 5 25 ba 22
prove a predicate is satisfiable . 6b 5
describe the number sets N, Z, Q, R, C 6 6
describe a proof by div. into cases 5b 7
describe a proof by contradiction 7 b
construct a proof by division into cases 7a 7b 7
construct a proof by contradiction
describe a proof by contrapositive 5a
construct a proof by contrapositive 7b 7a
describe a proof by generalisation . 5a,5b
construct a proof by generalisation
construct an existence proof 9 8
identify proof to use for a given claim 5b
compute a sequence of a rec. def . 6a 10 8 8
construct/interpret rec. def . 3 6b,6¢
explain the principle of an induction proof 2 11 9 7
construct an ind proof for numbers 33a 23a 2c 23
construct an ind proof for algorithms 4 33b 10 12,26
construct recursive definitions on sets 12a 12,13 | 23b,24 10-11,27
construct a proof using struct. induction 12b 14,15 23c 19,28
explain and apply basic set operations. 1 16 11 6,29
construct Venn diagrams 5 17,18 12 29
construct ce for claims on sets 1,13 19,34b 25 22
compute the powerset of a set 20,21 13 2,24a
compute the cartesian product of two sets 22 14 20
construct proofs for claims on sets 34a 25 29
describe Cantor's proofs about infinite sets 11b 23 15 13,27
construct f or R from nat. language 24,25 26a 24b
describe the diff. between f and R 35a 16 14
determine the inverse of R and f 8 35b 26b 24c
determine if f is well-defined 6 26 17 15
determine if f is inj., surj., or bij. 7,11a,c 27 18 16
determine if R is sym., trans. or refl. 9 28,29 19 17
describe an equivalence relation 10 30 20,26¢ 18,25
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Multiple-Choice questions

1. Consider the formal structure S with domain D® = N, and truth sets P° = {0,1,3,4}, Q = {5,7,9, 11},

and R® = {(0,823),(23,127)}.

Which of the following statements is true for the structure S7 Note carefully the order in which = and

y are introduced and used in R!
A. Vz(P(z) = Jy((y < 2V Q(y)
)

D

)
B. Vy(P(y) —» Jz((y < 2 A Q(z
C. Va(P(x)

- Vy(P(y)

(
= (F((y <z AQy
= @y <z A Q(

Answer:

A. Counterexample: For x = 1 there is no value for y that makes R(y, 1) true.

B. For all values for which P is true, we can take z = 5 to make the consequent of

the implication true.

Counterexample: For z = 1 there is no value y in @ such that y < 1, nor is there a value
in R such that R(y,1) is true.

Counterexample: For y = 1 there is no value z such that R(x,1) is true.

2. Which of the following is true when we want to prove a property Q(x) is true for all statements « in

PROP?

A.

In the induction step we prove that Vo € PROP(Q(z) — Q(—x)).

B. In the induction step we prove that Va(z € PROP — —z € PROP ).
C.
D. In the induction step we prove that if Q(p;) for a propositional variable p;, then also Q(—p;).

In the induction step we prove that Va(Q(z) € PROP — Q(—z) € PROP ).

is not

Answer: Answer A describes exactly what we should do for the first recursive rule of PROP. Answer
B is this rule, answer C is nonsense as Q(x) is not in Prop, as Q(z) is a predicate and the last one

sufficiently generic.

3. Which of the following is true about all sets A7

A.

If @ € A, then there is a set B, such that #(B) = A.

B. If C C A, then there is a set B such that B € #(A) and B C C.
C.
D. If there is a set B such that for all x € A:  C B, then #(B) = A.

If |A] is divisible by 4, then there is a set B, such that #(B) = A.

Answer:

Counterexample: Take A = {0, 1}. There is no set such that 1 C B.
Take B = (), now this statement is true for every subset C of A.

Counterexample: Take A = {1,2,3,4}. There is no set such that 1 C B.

O o ®

Counterexample: Take A = B = (). Clearly all x € A are a subset of B, but A is not the
power set of B.
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4. On the multiple choice test of this course, in question 6 a mistake in the answers argued that P — Q =
@ — P is not sufficient for P <+ Q. Why is this a mistake?

A. Because (P — Q) + (Q — P) is a tautology.

B. Because (P — Q) +> (Q — P) is a contradiction.

C. Because (P — Q) <> (Q — P)) — (P A —Q) is a contradiction.
D. Because (P — Q) + (@ — P)) — (=P V Q) is a contingency.

Answer: Ironically this question again contained a mistake, with no answer being correct.

5. Which of the following statements is true?
A RCQ
B. Q C (NAZ)
C. (Z~QCN
D. (@\Z)CN

Answer:

A. Counterexample: 7 € R and 7 & Q.

4 4
B. Counterexample: 3 € Q and 3 ¢ NAZ.
C. Correct, Z C Q, so Z ~ Q = 0.

4 4
D. Counterexample: 3 € Q\Z and 3 ¢ N.

6. Which of the following statements is true about an arbitrary statement A?
A. A is satisfiable iff A is valid.
B. A is valid iff = A is not valid.
C. A is valid iff —A is not satisfiable.
D. A is satisfiable iff = A is not satisfiable.

Answer: From slides of lecture 5:

e satisfiable:  a structure makes the formula true
e unsatisfiable: no structure makes the formula is true

e valid: every structure makes the formula true
We can reduce unsatisfiability and validity to SAT solving:

e F'is unsatisfiable iff F' is not satisfiable (F has no model)

e Fisvalid iff =F is unsatisfiable (=F has no model)
Because: a structure must either make F' or —F true,
and thus every structure makes F' true.
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7. Someone wants to combine a proof by division into cases with a proof by induction to prove the property
P(n) for all integers n > 6. As a result her induction step does the following: “Take arbitrary k, such
that P(k) holds. If k is even: then we show P(k + 1) holds, if k is odd, then we show P(k + 3) holds.”
Which of the following should they prove in their base case to make the proof valid?

A. P(0) A P(1)

B. P(1)
C. P(2)
D. P(2)

Answer: The sequence we get in the induction step if k — k+1 — k+4 — k+5 — k+8
(assuming an even k). So starting from 0 and 2 we get:

e P(0) = P(1) = P(4) = P(5) = P(8) = P(9) etc.
e P(2) = P(3) = P(6) = P(7) = P(10) = P(11) etc.

If we have one from each chain, we have all the numbers we need.

8. Let f(P) be the number of ones in the column for the main connective of the compound proposition P,
and let a(P) be the number of unique propositional variables in P.
Which of the following statements is true?

A If a(P) = a(Q) then [(P) = (Q)

B. If a(P) > a(Q), then f(PAQ) > f(PV Q).
C. If a(P) =a(P AQ), then f(P)> f(PAQ).
D. If a(P) < a(PV Q), then f(P) > f(PV Q).

Answer:
A. Counterexample:P =pV =p, @ = p A —p.
B. Counterexample:P =pA-pAgq, Q=r.

C. Correct, in general f(P) > f(PAQ) as an and operation cannot create more truths,
provided () does not introduce new atoms. Since a(P) = a(P A Q) all of the atoms
from (Q must also appear in P, thus it contains no new atoms.

D. Counterexample:P =p, Q = q, now f(P)=1and f(PV Q) = 3.

9. Consider the recursively defined set A C 7Z using the rules:

. 13€¢ Aand3€ A
Il zeA—-z—-12€ A
. Bze ANz €eZ)—x€A
IV. Nothing other than created by the rules above is in A.

Which of the following is true?
A —23¢ A
B.0ecAd
C.2e€A4
D. 25¢ A
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Answer: Applying rule Il gets us 1 € A, as well as —9 € A and a whole lot of negative numbers.
Applying rule 11l gets us 1 € A as well, as well as more negative numbers. So the only non-negative
numbers in the set are 1,3, 13.

Thus 0 € A, as that would require 12 to be in A or 3-0 =0 to be in A. Furthermore —23 € A, as

we can apply rule 2 twice more on 1 to get 1 — 12 — 12 = —23. Finally, 2 € A as that would require
14 to be in A or 6 to be in A. Neither of which can be created either.

10. Someone argues that if we add the rule: z,y € A — 2x + y € A to the set of rules above, then A = Z.
Is this correct?

A. Yes

B. No,as0¢ A
C. No,as05¢ A
D. No,as5¢ A

Answer: Note that Yz € A : 24 x. Simplified proof:

Proof. Base case: 2113 and 2 t 3 Inductive step: Take arbitrary z,y € A such that 2 { z,y. For
every rule:

ez —12=2k+1-12=2(k—6)+1s02{xz— 12.
o If x = 3k for some k and since if 2t 3k, then 21 k.

Proof. Proof by contrapositive: 2 | k — 2 | 3k. Take arbitrary m such that 2 | m. Now
3m = 3(2¢) = 2(3¢) = 2d, so 2 | 3k. Since the contrapositive is equivalent, and m was
arbitrarily chosen <Blah>. QED

Thus 2 1 k and thus an odd element is added to A by this rule.
o 2u+y=22k+1)+2m+1=4k+24+2m+1=2(02k+14+m)+1=2d+1thus2{ 2z +y.
QED

Hence 0 is not in A. 5 € A, as we can get to 9 with the new rule and x = y = 3, to 15 with the
new rule and x = 3,y = 9. Then use rule Il to divide by 3 and you get 5.

11. We say a set A is bounded iff 3z,y € R(Va € A(x < a < y)). Which of the following statements is
true?

A. N is bounded.
B. There are finite sets that are not bounded.
C. There are infinitely many bounded infinite sets.

D. The intersection of a bounded set and an unbounded set is always finite.

Answer:

A. Nope there is no y that works for this.

B. Nope, take z = min(A) — 1 and y = max(A) + 1.

C. Correct for all n € N the set {x € R|n <z <n+ 1} is bounded and infinite.
D

. Nope, It is always bounded, but as we have just seen that does not mean it must be finite.
Take for example the intersection of {x e R|1 < z <2} and R.
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12. Which of the following relations is a well-defined function f : A — B with A = {a,b,c} and B =
{1,2,3}.

A L=

B. I ={(a,1),(a,2),(a,3)}

C. N= {(a7 1)7 (b, 1)7 (Cv 1)}

D. K= {(17(1)’ (27b)7 (3,6)}
Answer:

A. All elements from A must be mapped.
B. All elements from A must be mapped.
C. This is fine.
D

. Order matters in tuples.

13. Which of the following statements is true?
A If f: A— B and A = B, then f is injective.
B. If |[A| > |B
C. If f: A — B is injective and surjective, then A = B.
D. If f: A — B is surjective and |A| > |B|, then f is injective.

, then f: A — B cannot be injective.

Answer: This question also had no correct answers unfortunately.

A. Counterexample: f: N — N with f(z) =0.

B. Counterexample: This only holds if A < |B|, when they are equal it can be bijective and
thus also injective.

x/2 if z is even

C. Counterexample: f:N — Z with f(z) = { (x+1)/2 iz is odd
—(x if xis o

D. Counterexample: f:{0,1,2} — {0,1} with f = {(0,0),(1,0),(2,1)}

14. Consider the following propositions:

e p represents: “(NPCNP) =¢"

e g represents: “P = NP”

e 1 represents: “You lose all your bitcoin.”

e s represents: “You give out your password.”

Which of the following statements accurately describes the following:

“If (NPC N P) # (, then P = NP. If you give out your password or if P = NP, then you lose all your
bitcoin.”

A (p—= g AN((mgVs)—r)
B. (w—=q)A((gVs)—r)
C.p—(=gn((qgVs)—r))
D. ~(p—=a)A(=(gVs) =)
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Answer: The two sentences should be translated separately and connected by a A. Thus we get:
—p — ¢ for the first sentence and (¢ VV s) — r for the second.

15. After their many adventures stepping on K-Maps and converting speeds, the Ducks and Sharks have
accomplished their mission. On their way home however, the newly created friendship between Donald
McDuck and Shirley McShark threatens to break down. They disagree about the notion of equivalence

classes.

The argument is sparked by the following diagram they find in some street art down at the sea,

depicted in Figure

S

se

i —

Figure 1. The street art by the sea

Which of the following statements is true about the relation R?

A. [a] = [f] if we just add two elements to R.

B.

[g] = [f] if we just add two elements to R.

C. We can half the number of partitions by just adding two elements to R.

D. We can double the number of partitions by just removing two elements from R.

Answer: Simply add (g, f), (f,g).

16. Which of the following is true?

A.IfAcCC,then Ax BCC x B.

B. If AC B, then Ax BC B x B.

C.IfA=B,then AxBx A= (BxA)xB.

D. If A= B, then Ax Bx AC B x (A x B).
Answer:

A. Correct, but proof is left as an exercise to the reader.

B. Counterexample: A = B.

C. Counterexample: A=B={1}. Ax BxA={(1,1,1)} #{((1,1),1)} = (Bx A) x B.
D. Counterexample: A=B={1}. AxBxA={(1,1,1)} Z {(1,(1,1))} = B x (A x B).
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Open questions
17. (a) (1 point) Give a Venn Diagram for the set (A — B) U (B — C).

Answer:

(b) (5 points) Claim: For all sets A if |A| is odd and ) € A then there is no set B such that #(B) = A.
If the claim is true, prove it. If it is false, give a counterexample.

Answer:

Proof. Proof by contradiction: Assume there is a set A such that |A] is odd, § & A and there
is also a set B such that #(B) = A.

Since @ C B, it must hold that ) € 2(B). Thus ) € A, which contradicts the assumption that
() ¢ A. Thus by contradiction, it holds for all A. QED

Alternatively:

Proof. Proof by contrapositive: VA(3B(Z(B) = A) — (Fk(|A| = 2k) vV 0 € A)).
Take an arbitrary A such that there exists B with #(B) = A.
Now consider the two exhaustive cases: |B| =0 and |B| > 1.

e |B| = 0, this means that B = (), thus A = Z(B) = {#}. Thus @ € A, and therefore
Jk(JA] = 2k) VD € As true.

e |B| > 1. We also know that |A| = |#(B)| = 2!PI. Since |B| > 1, this means |A| = 22
for some ¢ > 0. Thus |A| = 2d for some d. Therefore Jk(JA| = 2k) V0 € A is true.

Since the claim holds in both cases and A was arbitrarily chosen, it holds for all A. QED
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18. (6 points) Prove that for all integers n > 1: 7 | 22 4 327+ Make sure to show your intermediate
steps.

Answer:

Proof. Proof by induction.

Base case (n=1): 22 4+33=8+27=35="7-5=7d with d = 5, hence 7 | 2172 4 32+1,
Inductive step: Assume the claim holds for an arbitrary k& > 1, that is: 7 | 282 4 32k+1 (1H).
To prove: 7| 2(k+1+2 4 g2(k+1)+1

o(k+1)+2 | g2(k+1)+1 _ o ok+2 | g . 32k+1
— 2(2/€+2 + 32]€+1) + 7 . 32/€+1
By IH:
= 2(7d) + 73!

= 7(2d + 3%
=Te

For e = 2d 4 3%F*1 thus 7 | 2(k+1)+2 4 32(k+1)+1 " Since k was arbitrarily chosen it holds for all
integers > 1. Thus by the principle of induction the claim holds for all integers > 1. QED
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19. (a) (2 points) What are the three properties an equivalence relation needs to fulfil? Give both the name
and a brief description (or logically written definition) of the properties.

Answer:
o Reflexivity: Va(R(x,x))
o Symmetry: VaVy(R(z,y) — R(y, z))

o Transitivity: VaVyVz((R(z,y) A R(y, 2)) = R(z, z))

(b) (3 points) For following relation describe for each of the properties you gave us in question a, whether
the relation satisfies that property and why it does (not). Two ducks a and b are in the relation R

if @ has more children than b.

Answer:

e Reflexivity: Nope, a duck does not have more children than itself. Take a duck with 2
kids, 2 > 2 does not hold.

e Symmetry: Nope, if R(a,b) then c(a) > ¢(b), thus it is not possible for ¢(b) > c(a) to
also hold.

e Transitivity: Yes, if c(a) > ¢(b) and ¢(b) > c(c) then surely also ¢(a) > ¢(c).
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20. (a) (2 points) Consider: (p — ¢q) .. (¢ — p). If this argument is valid, prove it. If it is not give a
counterexample and explanation to disprove it.

Answer: p = 0,q = 1 makes the first half true and the second half false. This thus makes the
implication false.

(b) (3 points) Consider: (Fz(P(z)) A Jy(Q(y))) <> Vz(P(x) A Q(z)). If this is satisfiable, prove it. If
it is not, explain why not.

Answer: Take the structure S with D% = P% = Q¥ = {a}. Clearly this satisfies the left and
right hand side of the bi-implication.

(c) (4 points) Give a counterexample and explanation as to why it is a counterexample for the statement:
for all sets A, B, C' it holds that (((A—B)N(CUB))C B) - ANnB=1.
Note that a Venn Diagram does not constitute a counterexample!

Answer: To make the left-hand side true, (AN C) — B must be empty. To make the second
part false, AN B must not be empty. Thus take: A = {1}, B = {1,2},C = {3}. This gives
(A-—B)Nn(CUB) = (0n{1,2,3}) = 0, which is a subset of B. Yet AN B = {1} so not
empty.

21. Consider the sets A = {a,b,{c,d}} and B ={1,2,3,4,{5,6}}.
(a) (2 points) Give the powerset of A.

Answer: Z(A) = {0,{a}, {b}, {{c,d}}, {a,b},{a,{c,d}},{b,{c,d}}, A}

(b) (2 points) Give a function f: A — B.

Answer: f ={(a,1),(b,1),({c,d},1)}.

(c) (2 points) If your function f has an inverse, give it. If it does not, explain why not.

Answer: f cannot have an inverse. Since |B| > |A]| it cannot be surjective, and thus not
bijective and thus there is no inverse.
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22. (10 points) Consider the following function:
function Foo(A,B)
T+ A
y+ B
p=20
while y # 0 do
if 2|y then
T2
y<y/2
else
p<pt+zx
y—y—1
end if
end while
return p
end function

The ancient Egyptians already used this algorithm to compute A - B for A, B € N. Prove that this
algorithm indeed computes the multiplication. Hint: You can prove zy + p = AB to be a useful
invariant.
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Answer:

Proof. Take xy + p = AB as our invariant:

|. Basis property: x = A, y = B, p = 0 so before the loop xy +p = AB+ 0 = AB. Meaning the
invariant holds.

I. Inductive property: Assume Zoid¥old + Poid = AB. To prove: TnewlYnew + Pnew = AB. Division
into cases:

° 2 | Yold -

Tnew = Told * 2
Ynew = yold/2
Pnew = Pold

So for what we need to prove:

TnewYnew T Pnew = Told * 2 - yold/2 =+ Pold
= ZoldYold + Pold

By IH:

=AB

® 21 %Yo

LTnew = Told
Ynew = Yold — 1
Prew = Pold + Zold

So for what we need to prove:

ZTnewYnew T Pnew = Told - (yold - 1) + Pold + Zold
= ZoldYold T Pold + Lold — Zold
= ToldYold + Pold

By IH:
= AB

[Il. Termination and falsity of guard: Since every iteration of the loop y decreases (either by a factor
of 2 or a constant of 1) at some point it will be = 0. (It cannot be negative as this would
require that we subtract 1 from 0, but since zero is even this will never happen).

IV. So at the end we know that y =0 thus zy +p=0-2+p=p = AB.

QED
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23. (5 points) Consider the set A ={z € N|Jy € Z(z = 4y)}.
Claim: Set A has the same cardinality as Q.
If this claim is true, prove it. If this claim is false, disprove it. Start you answer with: “True” if you
believe the claim to be true and with “False” if you believe the claim to be false.

Answer: True: Take the function f: N — A, with f(z) = 4z. Since f is injective (f(x) = f(y),
means that 4z = 4y, means © = y.), and surjective (for any y € A, we know y =4x, so y/d =z €
N), it is also bijective. Therefore N and A have the same cardinality. And since Q and N have the
same cardinality, so do A and Q.

24. (a) (2 points) Create a truth table for (p A =q) <> —=(¢ V p).

A B
P 9| pA—-¢ (¢qVp) -B A -B
Answer: 0 0 0 0 1 0
0 1 0 1 0 1
1 0 1 1 0 0
1 1 0 1 0 1

(b) (4 points) Consider a new normal form similar to DNF and CNF. The Implicative Normal Form
(INF) requires propositions to be an implication (just the one!) of disjuctions. Similar to DNF and
CNF, negations may only occur in front of literals, not on compound propositions. Examples of
expressions in INF include p — ¢, pV g, and (pV gV z) = (¢Vr).

Rewrite (p V =¢q) V =(r — p) to INF, simplify your answer as much as possible.

Answer:

(pV=q)V—(r—=p)=pV-qV(rA-p)
=(V-qVr)A(pV—qV-p)
=(pV-qVr)AT
=q—(pVvr)
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25. (a) (8 points) Consider the recursive definition of the set A:
I.3€ A, 15€ A
. re A—>8x+24€ A
. z,yec A—-2x—-Tyec A
IV. Nothing other than created by the rules above is in A.

Prove that every number in A is divisible by 3.

Answer:
Proof. Proof by structural induction:
e Base cases: 3=3-1and 15 =35, thus 3|3 and 3 | 15 both hold.

e Inductive step: Take arbitrary k,m € A, such that 3 | £ and 3 | m (IH). To prove:
3|8k + 24, 3| 2k — Tm.

8k + 24 D 8(3¢) + 24

= 3(8c +8)
—3d

2k — 7m 'Ho(3¢) — 7(34)
= 3(2¢ — 7d)
= 3e

So 3|8k +24 and 3 | 2k — Tm.

Thus by the principle of induction it holds for all elements of A that they are divisible by
3. QED

Note: Many people lost one or two points for the IH here. You should include the following
notions:

e k.m are arbitrary
e kme A
e 3|kand3|m

e or alternatively 3¢, d € Z such that k = 3¢ and m = 3d

(b) (4 points) Create a recursive definition for a set A C Z that contains all numbers divisible by 11.

Answer:

.0 A
lLzeAdA—=z+11c A
M zecA—-x—-11€ A

IV. Nothing other than created by the rules above is in A.

End of the exam



