Answers Exam TI2710-A/IN2405-A

January 25th 2012

Question 1 - LTI systems

(a) (1 p.) A causal system only makes use of present and past values of the input. For example y[n] = 2x[n] + x[n-1].

Consider the following input-output relation:

$$y[n] = 2x[n+3] + n.$$

- (b) (2 p.) For a linear system, the superposition principle must hold. Let $x_1[n] \to y_1[n] = 2x_1[n+3] + n$ and $x_2[n] \to y_2[n] = 2x_2[n+3] + n$. Set now $x[n] = \alpha x_1[n] + \beta x_2[n] \to y[n] = \alpha 2x_1[n+3] + \beta 2x_2[n+3] + n \neq \alpha y_1[n] + \beta y_2[n]$. The system is thus not linear.
- (c) (1 p.) The system is time-variant: Delaying input x[n] over n_0 samples, followed by filtering with the given LTI filter, gives another output than when x[n] is first filtered followed by delaying the output. Hence: $x[n] \to x[n-n_0]$. $x[n-n_0] \to w[n] = 2x[n+3-n_0] + n$, while first filtering gives $x[n] \to y[n] = 2x[n+3] + n$, which after delaying over n_0 samples becomes $y[n-n_0] = 2x[n+3-n_0] + n n_0$. Clearly, $y[n-n_0]$ and w[n] are unequal.
- (d) (2 p.) Compute the convolution between the two impulse responses:

n	0	1	2	3	4
$h_1[n]$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	0	0
$x_1[n]$	ľ	$\check{2}$	ľ	0	0
$x_1[0]h_1[n]$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	0	0
$x_1[1]h_1[n-1]$	Ŏ	$\frac{3}{2}$	32 3	$\frac{2}{3}$	0
$x_1[3]h_1[n-2]$	0	Ŏ	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
$y_1[n]$	$\frac{1}{3}$	1	$1\frac{1}{3}$	1	$\frac{1}{3}$

$$y_1[n] = \frac{1}{3}\delta[n] + \delta[n-1] + 1\frac{1}{3}\delta[n-2] + \delta[n-3] + \frac{1}{3}\delta[n-4].$$

(e) (2 p.) $y_1[n]$ consists of three scaled and delayed impulses. Therefore,

$$y_1[n] = h_1[n] + 2h_1[n-1] + h_1[n-2],$$

and, a = 1, b = 2 and c = 1.

System \mathcal{S}_1 is put in cascade with a system \mathcal{S}_2 with the following input-output relation

$$y_2[n] = x_2[n] - x_2[n-2].$$

(f) (2 p.) $h_2[n] = \delta[n] - \delta[n-2]$. Using the super-position principle or convolution we obtain

$$h[n] = \frac{1}{3}\delta[n] + \frac{1}{3}\delta[n-1] - \frac{1}{3}\delta[n-3] - \frac{1}{3}\delta[n-4].$$

Question 2 - Sampling and Fourier Series

(a and b) (1 p. and 1 p.) The period is $T_0 = 0.1$ sec.

Figure 1: plot of y(t) and its sampled version.

- (c) (2 p.) The maximum frequency in this signal is 10 Hz, which means that the sampling frequency should be larger than 20 Hz in order to be able to reconstruct the signal. $f_s < 20$ Hz, and thus aliasing is introduced.
- (d) (1 p., 1 p. and 1 p.)

$$a_{+1} = \frac{1}{0.1} \int_0^{0.1} (5 + e^{j20\pi t} e^{j\pi/2} + e^{-j20\pi t} e^{-j\pi/2}) e^{-j(2\pi/0.1)t} dt =$$

$$\frac{1}{0.1} \int_0^{0.1} (5 e^{-j20\pi t} + e^{j\pi/2} + e^{-j40\pi t} e^{-j\pi/2}) dt = e^{\frac{\pi}{2}j}$$

$$a_{+2} = \frac{1}{0.1} \int_0^{0.1} (5 + e^{j20\pi t} e^{j\pi/2} + e^{-j20\pi t} e^{-j\pi/2}) e^{-j(2\pi/0.1)2t} dt =$$

$$\frac{1}{0.1} \int_0^{0.1} (5 e^{j40\pi t} + e^{-j20\pi t} e^{j\pi/2} + e^{-j60\pi t} e^{-j\pi/2}) dt = 0$$

By working out the integral

$$a_k = \frac{1}{T_0} \int_0^{T_0} y(t)e^{-j(2\pi/T_0)kt}dt,$$

for k = -2, k = -1 and k = 0 we obtain $a_{-2} = 0$, $a_{-1} = e^{-\frac{\pi}{2}j}$ and $a_0 = 5$.

(e) (2 p.) The Fourier integral assumes that the signal consists of a sum of complex exponentials at frequencies k/T_0 and computes the amplitudes of these components (by computing an inner product). As the contribution of the signal at these higher frequencies is zero, a_k for $|k| \geq 2$ is zero.

Figure 2: Complex Spectrum of y(t).

Question 3 - Filtering

(a) (2 p.)
$$H(e^{j\hat{\omega}}) = \sum_{k=0}^{2} h[k]e^{-j\hat{\omega}k} = 4 + 4e^{-2j\hat{\omega}} = 8e^{-j\hat{\omega}\frac{1}{2}} \left(e^{j\hat{\omega}} + e^{-j\hat{\omega}}\right) = e^{-j\hat{\omega}8}\cos(\hat{\omega}).$$

(b and c) (1 p. and 2 p.)

$$H(e^{j\hat{\omega}}) = \underbrace{e^{-j\hat{\omega}}}_{A} \underbrace{8\cos(\hat{\omega})}_{B}.$$

Part A is mainly used for plotting the phase response, while part B gives the main contributions to the magnitude response. NOTE! In this case, part B can become negative (while the magnitude response is positive by definition). In those areas where B is negative, we have to multiply that part of the magnitude response with -1 in order to make it positive. In order to correctly introduce this multiplication with -1, we also have to multiply part A with -1, which means that the phase response in those areas obtains a shift of π , since, $-1 = e^{-j\pi}$.

To make the plot:

- 1. Identify the positions in the range $-\pi \leq \hat{\omega} \leq \pi$ where part B can become zero.
 - $8\cos(\hat{\omega}) = 0 \Rightarrow \hat{\omega} = \frac{1}{2}\pi + k\pi$ with k an integer.
- 2. Determine the (local) maxima of part B (1st derivative!) $f = (8\cos(\hat{\omega}))\prime = -8\sin(\hat{\omega}) = 0 \Rightarrow \hat{\omega} = \pi k$, with k an integer. That is, a maximum $f(-\pi) = -8$, f(0) = 8 and $f(\pi) = -8$.
- 3. Make a plot of part B.
- 4. Exactly below the plot of part B, make a plot of the angle of part A, i.e., $-\hat{\omega}$.
- 5. Multiply the areas where part B becomes negative with -1 and to compensate for this, shift the phase plot (part A) with π and make sure that the phase plot itself is always modulo 2π .
- (d) (2 p.) $|H(e^{j\hat{\omega}})|$ at $\hat{\omega} = \frac{\pi}{3}$ is 4, while $\angle H(e^{j\hat{\omega}})$ at $\hat{\omega} = \frac{\pi}{3}$ is $-\frac{1}{3}\pi$. Output y_1 becomes therefore

$$y_1[n] = 4\cos\left(\frac{\pi}{3}n\right).$$

Figure 3: Magnitude and principle values of phase response of $H(e^{j\hat{\omega}})$.

System \mathcal{S}_1 is put in cascade with a system \mathcal{S}_2 with impulse response

$$h_2[n] = \frac{1}{2}h_1[n].$$

- (e) (2 p.) The frequency response $H_2(e^{j\hat{\omega}}) = \frac{1}{2}H_1(e^{j\hat{\omega}})$. The cascaded system is therefore $H(e^{j\hat{\omega}}) = \frac{1}{2}H_1^2(e^{j\hat{\omega}})$.
- (f) (1 p.) This is an FIR filter, since H_1 is FIR and has a finite impulse response. Therefore, the impulse response of $H(e^{j\hat{\omega}})$, which represents a convolution between two finite impulse responses, must also be finite.

Question 4 - IIR Filters

Let $a \in \mathbb{R}$ be a constant. Consider the input-output relation of the following linear time-invariant system that is initially at rest:

$$y[n] = ay[n-2] + 2x[n].$$

(a) (2 p.) Making a table we obtain

h[0]	2
h[1]	0
h[2]	$a \cdot 2$
h[3]	0
h[4]	$(a)^2 \cdot 2$
h[5]	0
h[6]	$(a)^3 \cdot 2$
:	•
h[n]	$(a)^{n/2} \cdot 2$

$$h[n] = (\sqrt{a})^n u[n] + (-\sqrt{a})^n u[n].$$

- (b) (2 p.) This system is stable if $h[n] \to 0$ if $n \to \infty$. Therefore, this system is stable for |a| < 1.
- (c) (2 p.) y[n] = 2h[n] + h[n-1] + 2h[n-2].
- (d) (2 p.) $H(e^{j\hat{\omega}}) = \frac{2}{1-ae^{-j2\hat{\omega}}}$.
- (e) (2 p.) The frequency and impulse response are related to each other by the Fourier transformation. Computing the inverse Fourier transformation of the frequency response gives the impulse response.