Signal Processing CSE2220

Resit exam January 26, 2022, 13.30-16.30 h

- This exam has 5 questions, for which a total of 36 points can be obtained.
- The allotted time for this exam is 3 hours.
- Use of the Equation Sheet CSE2220 is permitted. On the equation sheet, hand-written notes are permitted in the page margins and on one blank back of a printed page.
- Use of a calculator is not permitted.
- For each of the questions, answer in the dedicated answer section of that question in the answer sheet.
- In case you do not answer a question, please still explicitly list the question on your exam paper, and clearly indicate you did not answer it (e.g. by leaving the rest of the line blank, or by a '-' after the question number).
- Questions should be answered in English.

This page intentionally left blank

Question 1 (6 points)

A discrete-time system S_w is described by the following input-output relation:

$$S_w$$
: $y[n] = x[n^2] + 3x[n-3] + \cos(n\pi)$.

- (a) (1 pt) Show whether system S_w is linear or not.
- **(b) (1 pt)** Show whether system S_w is time-invariant or not.

Given are two LTI systems \mathcal{S}_t and \mathcal{S}_r described as:

$$S_t: \quad y[n] = x[n] - x[n-1]$$

$$S_r$$
: $y[n] = x[n] + 4x[n-1] - 2x[n-2]$.

Systems S_t and S_r are put into cascade. The resulting cascaded system is called S_z .

(c) (2 pt) Give the impulse response of system S_z .

We consider an input signal:

$$x_1[n] = 3\delta[n] - \delta[n-2].$$

- (d) (1 pt) Compute the output $y_1[n]$ of system S_z for $x_1[n]$.
- (e) (1 pt) Compute the output $y_2[n]$ of system S_z for input signal $x_2[n] = x_1[n] 3x_1[n-1]$.

Question 2 (5 points)

We consider a system S_1 , characterized by the following input-output relation:

$$S_1$$
: $y[n] = \frac{1}{4}y[n-1] + 2x[n] - x[n-1].$

For n < 0, the system is in rest.

- (a) (2 pt) Give the impulse response $h_1[n]$ of system S_1 for all values $n \in [-\infty, \infty]$.
- (b) (1 pt) Explain whether S_1 is a stable IIR filter. Motivate your answer in at most 75 words.

We give an input signal x_3 to the system, which is specified as follows:

n	≤ −1	0	1	2	3	4	≥5
$x_3[n]$	0	2	4	6	0	0	0

(c) (2 pt) Compute the output of system S_1 for input signal $x_3[n]$.

Question 3 (7 points)

We consider a continuous-time periodic signal:

$$x_4(t) = 3\cos\left(100\pi t + \frac{\pi}{2}\right).$$

(a) (1 pt) Make a clear plot of signal $x_4(t)$ over two periods, starting at t=0.

Signal $x_4(t)$ is sampled at 400 Hz, resulting in a discrete-time signal $x_4[n]$.

(b) (1 pt) Give an expression for signal $x_4[n]$ and make a plot of the signal $x_4[n]$ over two periods, starting at n=0.

We now consider two more continuous-time periodic signals:

$$x_5(t) = 6\cos{(500\pi t - \frac{\pi}{4})}.$$

$$x_6(t) = 5 + x_4(t) + x_5(t)$$
.

- (c) (1 pt) What is the Shannon-Nyquist sampling rate of $x_5(t)$? Motivate your answer in at most 75 words.
- (d) (1 pt) What is the fundamental frequency of $x_6(t)$? Motivate your answer in at most 75 words.
- (e) (2 pt) Express $x_6(t)$ as a sum of complex exponents.
- (f) (1 pt) Make a clear plot of the complex spectrum X(f) of $x_6(t)$. Label each component in the complex spectrum with the appropriate complex amplitude.

Question 4 (9 points)

In broadcast content, spoken text that is deemed unsuitable or sensitive for the public ear is often censored by a beep. Consider we have a sampled audio recording s[n], featuring speech uttered by multiple speakers. Some parts of the audio recording are censored by a censoring beep of 1000 Hz. Human speech typically has fundamental frequencies between 85 and 400 Hz. The audio recording is sampled at $F_s = 4000$ Hz.

We are interested in detecting where in time the censored content occurs. To this end, a framework is implemented applying the following steps (illustrated in Figure 1):

- Employ a short-time analysis window to consider consecutive smaller parts (analysis frames) of the recording. An analysis frame is denoted by x[n].
- For each frame, apply an LTI filter S_{beep} retaining frequencies associated with a censor beep, and a filter S_{speech} retaining frequencies associated with speech. As a consequence, we obtained filtered outcomes $y_{beep}[n]$ and $y_{speech}[n]$.
- Take the DFT of $y_{beep}[n]$ and $y_{speech}[n]$, and compute the sum of squared DFT coefficients for $Y_{beep}[k]$ and $Y_{speech}[k]$.
- If $\Sigma(Y_{beep}[k])^2 \gg \Sigma(Y_{speech}[k])^2$, the frame is marked as having censored content.

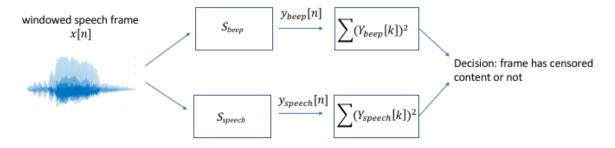


Figure 1. Censored content assessment framework.

- (a) (2 pt) Consider the characteristics of the DTFT magnitude spectrum $|S(e^{j\widehat{\omega}})|$ over the full audio recording S[n]. Make a sketch of what $|S(e^{j\widehat{\omega}})|$ could look like, clearly indicating where on the frequency axis you would expect to see speech and beep occurrences. Explain why the DTFT would look like that in your view.
- **(b) (1 pt)** Consider S_{beep} and S_{speech} , the filters that would be capable of retaining beeps and speech, respectively. If you could freely design suitable frequency responses for S_{beep} and S_{speech} , what would these look like? Make a clear sketch and explain your drawing.

We now consider three possible LTI filters:

- filter A, with $h_A[n] = \delta[n] + \delta[n-2]$.
- filter B, with $h_B[n] = \delta[n] + \delta[n-4]$.
- filter C, with $h_C[n] = \delta[n-1] + \delta[n-2] + \delta[n-3]$.

- (c) (1 pt) Compute the frequency response $H_A(e^{j\widehat{\omega}})$ for filter A and sketch the corresponding magnitude spectrum.
- (d) (1 pt) Compute the frequency response $H_B(e^{j\widehat{\omega}})$ for filter B and sketch the corresponding magnitude spectrum.
- (e) (1 pt) Compute the frequency response $H_C(e^{j\widehat{\omega}})$ for filter C and sketch the corresponding magnitude spectrum.
- (f) (1 pt) Make a clear plot of the phase $\mathrm{arg}\left(H_c(e^{j\widehat{\omega}})\right)$

None of the filters A, B, C would be optimal for S_{beep} or S_{speech} . However, by cascading two of these filters, a reasonable filter for S_{speech} can be obtained.

(g) (2 pt) Which two filters out of {A, B, C} would you put in cascade for S_{speech} ? Explain your answer and make a sketch of the magnitude spectrum of the cascaded filter.

Question 5 (9 points)

We consider a signal $x_7[n]$:

$$x_7[n] = 2\delta[n] - \delta[n-1] + 2\delta[n-4].$$

We now wish to compute the DFT $X_7[k]$ of signal $x_7[n]$. For this, we need to choose the length of the DFT.

(a) (1 pt) Choosing a larger DFT (for example, a 1024-point DFT instead of a 4-point DFT) will give a closer approximation to the DTFT. Explain why this is the case.

In part (b) and (c), we choose for $X_7[k]$ to be an 8-point DFT of signal $x_7[n]$. An incomplete specification of $X_7[k]$ is given below:

k	0	1	2	3	4	5	6	7
$X_7[k]$?	-0.7071 + 0.7071j	?	?	15	0.7071 - 0.7071 <i>j</i>	?	?

- **(b) (1 pt)** Calculate $X_7[0]$.
- (c) (1 pt) Calculate $X_7[2]$.
- (d) (1 pt) Give the full specification of $X_7[k]$ using the properties of the DFT of a real-valued signal. Explain how you determined the missing values (?).

Signal $x_7[n]$ is given as input to a system S_F , yielding an output signal $y_7[n]$. The system has the following impulse response $h_f[n]$:

n	0	1	2	3	4	5	6	7
$h_f[n]$	1.5	-0.5	1.5	-0.5	1.5	-0.5	1.5	-0.5

The corresponding frequency response $H_F[k]$ is:

k	0	1	2	3	4	5	6	7
$H_F[k]$	4	0	0	0	8	0	0	0

The output signal $y_7[n]$ can be computed in multiple ways. One way to do is, is by first computing $Y_7[k]$, making use of $X_7[k]$ and $H_F[k]$.

(e) (1 pt) Compute $Y_7[k]$, making use of $X_7[k]$ and $H_F[k]$.

(f) (2 pt) Compute the output signal $y_7[n]$ by taking the inverse DFT of $Y_7[k]$. (Hint: for the inverse transformation, use the formula $x[n] = \frac{1}{N} \sum_{K=0}^{N-1} X[K] e^{j\frac{2\pi}{N}Kn}$)

While $y_7[n]$ can be computed by taking the inverse DFT of $Y_7[k]$, it can alternatively be computed through a linear convolution of $x_7[n]$ and $h_f[n]$.

- (g) (1 pt) Compute $y_7[n]$ through linear convolution.
- (h) (1 pt) Is the $y_7[n]$ computed by direct convolution the same to the $y_7[n]$ obtained via the inverse DFT in (f)? Explain why the results are/are not the same in around 75 words.