

Delft University of Technology Faculty EEMCS Mekelweg 4, 2628 CD Delft

> Exam part 2 Real Analysis (AM2090) 21-01-2022; 13.30-15.30 Teacher M.C. Veraar, co-teacher K.P. Hart.

1. Let S be a set.

- (4) a Complete the following definition: A family \mathcal{A} of subsets of S is called a σ -algebra if
- (7) Let $S = \mathbb{R}$. Give an example of two σ -algebras \mathcal{A} and \mathcal{B} such that $\mathcal{A} \cup \mathcal{B}$ is not a σ -algebra (prove your assertions).
 - 2. Let (S, A) be a measurable space.
- (4) a. Complete the following definition: A mapping $\mu: \mathcal{A} \to [0, \infty]$ is called a *measure* if ...
- (10) b. Suppose that (S, \mathcal{A}, μ) be a measure space and let $A_k \in \mathcal{A}$ for each $k \geq 1$. Prove that

$$\mu\Big(\bigcup_{k\geq 1} A_k\Big) \leq \sum_{k\geq 1} \mu(A_k).$$

- 3. Let λ denote the Lebesgue measure on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$.
- (5) a. Using only the definition of λ , and properties of measures show that $\lambda(\{x\}) = 0$ for every $x \in \mathbb{R}^d$.
- (10) b. Let d=1. Using only the definition of λ , and properties of measures find $\lambda(A \cup B \cup C)$, where $A=\mathbb{Q}\cap(0,1),\ B=[2,3],$ and C=(7,9).
 - 4. On \mathbb{R} we will consider the Borel σ -algebra $\mathcal{B}(\mathbb{R})$.
- (4) a. Let (S, A) be a measurable space. Complete the following definition: A function $f: S \to \mathbb{R}$ is called measurable if ...
- (10) b. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is increasing: x < y implies $f(x) \le f(y)$. Show that f is measurable. *Hint:* Use a suitable characterization of measurability.
- (10) Let (S, \mathcal{A}, μ) be a measure space. Let $f, g: S \to [0, \infty]$ be measurable functions. Prove that for all $K \in \mathcal{A}$ and $\alpha, \beta \in [0, \infty)$, $\int_E \alpha f + \beta g d\mu = \alpha \int_E f d\mu + \beta \int_E g d\mu.$

Hint: You may use that the above identity holds for simple functions $f, g: S \to [0, \infty]$.

- 6. Let (S, A, μ) be a measure space.
- (3) a Suppose that $f: S \to \overline{\mathbb{R}}$ is measurable and $g: S \to [0, \infty]$ is integrable, and that $|f| \leq g$. Explain why f is integrable.
- (12) State and prove the dominated convergence theorem.

See also the next page.

- (5) 7. a. Show that $\lim_{k\to\infty} \widehat{f}(k) = 0$ for all step functions $f:[0,2\pi]\to\mathbb{R}$. Hint: First consider $f=\mathbf{1}_{(a,b)}$ with $0\leq a< b\leq 2\pi$ and use linearity.
 - (6) b. Show that for all integrable $f:[0,2\pi]\to\mathbb{R}$ one has $\lim_{k\to\infty}\widehat{f}(k)=0$. Hint: Fix $\varepsilon>0$. Choose a step function $g:[0,2\pi]\to\mathbb{R}$ such that $\|f-g\|_1<\varepsilon$, and use that $\lim_{k\to\infty}\widehat{g}(k)=0$ by (a).

The value of each (part of a) problem is printed in the margin; the final grade is calculated using

$$Grade = \frac{Total + 10}{10}$$

and rounded in the standard way.