
Midterm Mathematical Structures AM1010
Monday January 27, 2019, 9:00-12:00

No calculators allowed. Write the solutions in the fields provided. The grade is (score+8)/8.

1. Consider the statement (p ∨ q)⇒ (p ∧ q).

(a) Give the truth table of this statement. 3

Solution. The truth table is given by

p q p ∨ q ⇒ p ∧ q
T T T T T
T F T F F
F T T F F
F F F T F

(b) Is this statement a tautology? Explain your answer! 1

Solution. No because the statement is not true in every case (the column underneath
⇒ does not consist of all T’s).

2. What is the error in the following proof? Give the line number and explain what goes 4
wrong.

Consider the relation on R defined by xRy if and only if xy ≥ 0. We will show the relation
is transitive

(a) Suppose xRy and yRz hold

(b) Then xy ≥ 0 and yz ≥ 0

(c) Therefore xy · yz ≥ 0

(d) Note that y2 ≥ 0 for all y ∈ R,

(e) Thus we conclude xz ≥ 0.

(f) Hence xRz holds as well.

Solution. Line (e) is wrong, as we divide by y2, which could be 0.

Indeed 1R0 and 0R(−1) are both true, but 1R1 is not.

3. Formulate the completeness axiom for the real numbers. 2

(Give the one from this course, not the one from AM2090: Real analysis.)

Solution. A non-empty bounded set of real numbers has a supremum.

4. (a) Complete the definition of a Cauchy sequence. 2

A sequence (sn) is Cauchy if

Solution. ∀ε > 0 : ∃N : ∀n,m > N : |sn − sm| < ε.

(b) Prove that Cauchy sequences of real numbers converge. You may use the fact that 6
a Cauchy sequence is bounded, and the theorem of Bolzano-Weierstrass.



Solution. See the lecture notes.

Let (sn) be a Cauchy sequence. We note that (sn) is bounded. Applying Bolzano-
Weierstrass’ theorem we find that there is a convergent subsequence (snk

) with limit
lim snk

= s. We will prove that the entire sequence converges to s.

Let ε > 0. Choose N1 such that for all n,m > N1 we have |sn − sm| < 1
2
ε. Choose

N2 such that for all k > N2 we have |snk
− s| < 1

2
ε. Now take N = max(N1, N2),

then for all n > N , take k > N (which is possible), and then

|sn − s| ≤ |sn − snk
|+ |snk

− s| ≤ 1

2
ε+

1

2
ε = ε,

as Practice 4.4.3 shows that for k > N we must have nk ≥ k > N as well (we need
n, nk > N to conclude |sn − snk

| < 1
2
ε). We conclude that lim sn = s.

5. Suppose f : R→ R is a decreasing function and A is a bounded set.

(a) Give an explicit example of a decreasing function f : R → R and a bounded set A 5
for which the strict inequality sup(f(A)) < f(inf(A)) holds. Also provide the values
of sup(f(A)) and inf(A), but you don’t need to show your calculations for these.

Solution. In this case you need a function that jumps at the infimum of A. For
example

f(x) =

{
1− x x ≤ 0

−x x > 0

and A = (0, 1). Then inf(A) = 0 thus f(inf(A)) = 1. However f(A) = (−1, 0) and
sup(f(A)) = 0.

(b) Show that in general sup(f(A)) ≤ f(inf(A)). 6

Solution. Indeed we will show that f(inf(A)) is an upper bound to f(A). Let y ∈
f(A). Then there exists an x ∈ A with y = f(x). Now inf(A) ≤ x, so f(inf(A)) ≥
f(x) = y. We see that f(inf(A)) is indeed an upper bound to f(A) and therefore
sup(f(A)) ≤ f(inf(A)).

Alternative: Let a ∈ A. Then inf(A) ≤ a, so f(inf(A)) ≥ f(a). Thus f(inf(A)) is
an upper bound to f(A) = {f(a) : a ∈ A}, and thus f(inf(A)) ≥ sup(f(A)).

The axioms of an ordered field as applied to R are

A1 ∀x, y ∈ R : x+ y ∈ R and x = w ∧ y = z ⇒ x+ y = w + z;

A2 ∀x, y ∈ R : x+ y = y + x;

A3 ∀x, y, z ∈ R : x+ (y + z) = (x+ y) + z;

A4 ∃0 : ∀x ∈ R : x+ 0 = x and this 0 is unique;

A5 ∀x ∈ R : ∃(−x) ∈ R : x+ (−x) = 0 and (−x) is unique;

M1 ∀x, y ∈ R : x · y ∈ R and x = w ∧ y = z ⇒ x · y = w · z;

M2 ∀x, y ∈ R : x · y = y · x;

M3 ∀x, y, z ∈ R : x · (y · z) = (x · y) · z;

M4 ∃1 6= 0 : ∀x ∈ R : x · 1 = x and this 1 is unique;

M5 ∀x 6= 0 : ∃(1/x) ∈ R : x · (1/x) = 1 and (1/x) is unique;

DL ∀x, y, z ∈ R : x · (y + z) = x · y + x · z;



O1 For all x, y ∈ R exactly one of x = y, x > y, holds x < y;

O2 ∀x, y, z ∈ R : x < y ∧ y < z ⇒ x < z;

O3 ∀x, y, z ∈ R : x < y ⇒ x+ z < y + z;

O4 ∀x, y, z ∈ R : x < y ∧ 0 < z ⇒ xz < yz.

6. Let x, y ∈ R. Show that if x < y and 0 < x+ y then x · x < y · y using only the axioms. 1 6

Solution. We can apply O4: x < y and 0 < x+ y, so x(x+ y) < y(x+ y). Using DL this
becomes

x · x+ x · y < y · x+ y · y.

Applying A2 on the right hand side and M2 on the second term of the left hand side we
obtain

x · x+ y · x < y · y + y · x.

Adding −(y · x) on both sides (O3) gives

(x · x+ y · x) + (−(y · x)) < (y · y + y · x) + (−(y · x))

Applying A3 on both sides and subsequently A5 and then A4 gives

x · x+ (y · x+ (−(y · x))) < y · y + (y · x+ (−(y · x))

x · x+ 0 < y · y + 0

x · x < y · y

7. Consider the (convergent) series
∑∞

n=0
1

(2n+1)(2n+5)
.

(a) Give an explicit formula for the partial sum sn =
∑n

k=0
1

(2k+1)(2k+5)
and prove it using 7

induction.

Solution. (Part of scratch paper): Observe that 1
(2k+1)(2k+5)

= A
2k+1

+ B
2k+5

where

A and B satisfy the equation 1 = A(2k + 5) + B(2k + 1) = 2(A+ B)k + (5A+ B).
Thus A + B = 0 and 5A + B = 1. We have B = −A and 4A = 1, so A = 1/4 and
B = −1/4. Thus

sn =
n∑

k=0

1

(2k + 1)(2k + 5)
=

1

4

n∑
k=0

1

2k + 1
− 1

2k + 5

=
1

4

(
(1− 1

5
) + (

1

3
− 1

7
) + (

1

5
− 1

9
) + · · ·+ (

1

2n+ 1
− 1

2n+ 5
)

)
=

1

4
(1 +

1

3
− 1

2n+ 3
− 1

2n+ 5
) =

1

3
− 1

4

(4n+ 8)

(2n+ 3)(2n+ 5)

=
1

3
− n+ 2

(2n+ 3)(2n+ 5)
,

where all the remaining terms cancel each other. Notice that two terms remain at
the front, and two terms at the end.

10 < x+ y of course corresponds to −y < x, but showing that takes another bunch of axioms, so you don’t
have to do that.



(Actual result): We will show sn = 1
3
− n+2

(2n+3)(2n+5)
by induction. For n = 0

we have s0 =
∑0

k=0
1

(2k+1)(2k+5)
= 1

1·5 = 1
5
. On the other hand the right hand side

becomes 1
3
− 2

3·5 = 5
15
− 2

15
= 3

15
. Thus both sides agree.

Now assume sm = 1
3
− m+3

(2m+3)(2m+5)
for some value of m. Then

sm+1 = sm +
1

(2(m+ 1) + 1)(2(m+ 1) + 5)

=
1

3
− m+ 2

(2m+ 3)(2m+ 5)
+

1

(2m+ 3)(2m+ 7)

=
1

3
− 1

2m+ 3

(
(m+ 2)(2m+ 7)− (2m+ 5)

(2m+ 5)(2m+ 7)

)
=

1

3
− 1

2m+ 3

(
2m2 + 9m+ 9

(2m+ 5)(2m+ 7)

)
=

1

3
− 1

2m+ 3

(2m+ 3)(m+ 3)

(2m+ 5)(2m+ 7)

=
1

3
− m+ 3

(2m+ 5)(2m+ 7)

We conclude that the formula is also correct for sm+1.

By induction we find that sn = 1
3
− n+2

(2n+3)(2n+5)
for all n.

(b) Determine the value of the series, and show that your result is correct. 2

Solution. We have
∞∑
n=0

1

(2n+ 1)(2n+ 5)
= lim sn = lim

1

3
− n+ 2

(2n+ 3)(2n+ 5)

= lim
1

3
− 1/n+ 2/n2

(2 + 3/n)(2 + 5/n)
=

1

3
.

8. Determine for the following series whether they are absolutely convergent, conditionally
convergent or divergent.

(a)
∑∞

n=1(−1)n
√

n+1
n

3

Solution. Note that the terms do not converge to zero. Indeed

lim |an| = lim

√
n+ 1

n
= lim

√
1 +

1

n
=
√

1 = 1 6= 0.

Therefore the series
∑∞

n=1(−1)n
√

n+1
n

is divergent.

(b)
∑∞

n=1
n2+4

n3+5n+2
. 4

Solution. We compare this series to
∑

1
n
. But as n2+4

n3+5n+2
< n2+4

n3+4n
= 1

n
we have to

adjust the series we compare too a bit.

Note that 0 ≤ 1
2n
≤ n2+4

n3+5n+2
, as 2n3 + 8n > n3 + 5n + 2 for all n > 0. The

series
∑∞

n=1
1
2n

is a divergent harmonic series, so the series
∑∞

n=1
n2+4

n3+5n+2
is also

divergent.



9. Determine the radius of convergence and the interval of convergence for the series 5

∞∑
n=1

9n(2x+ 1)2n

n
.

You don’t have to determine whether or not the series converges at the endpoints of the
interval of convergence. In particular you do not have to determine if this interval is open,
closed or half-open. You can write whatever form you prefer in the box below.

Write the results in the boxes after you calculated them; use the space underneath to
explain your results.

Solution. R = 1
6
, and the interval of convergence is (−2

3
,−1

3
).

Indeed using the regular ratio test we obtain

lim

∣∣∣∣9n+1(2x+ 1)2n+2

n+ 1

n

9n(2x+ 1)2n

∣∣∣∣ = lim

∣∣∣∣9(2x+ 1)2
1

1 + 1/n

∣∣∣∣ = 9(2x+ 1)2

Thus the series converges (absolutely) if 9(2x+1)2 < 1 and diverges if 9(2x+1)2 > 1. We
rewrite the first inequality to (2x + 1)2 < 1

9
, so −1

3
< 2x + 1 < 1

3
, so −4

3
< 2x < −2

3
, so

−2
3
< x < −1

3
. We conclude that the interval of convergence is (−2

3
,−1

3
) and the radius

of convergence is half the length of this interval is 1
2
(−1

3
− (−2

3
)) = 1

6
.

Extra: At both endpoints, x = −1
3

and x = −2
3

the series becomes
∑∞

n=1
1
n

and thus
diverges.

10. (a) Give two bounded sequences sn and tn such that 4

lim sup(sn − tn) 6= lim sup sn − lim inf tn.

Show your example is correct by calculating the relevant quantities. You don’t have
to prove value of lim sup sn is what you say it is, etc.

Solution. If either sequence is convergent there will be equality, so we need both
sequence to be oscillating. So we just try our favorite example. Take sn = tn =
(−1)n. Then lim sup sn = 1, lim inf tn = −1 and lim sup(sn − tn) = lim sup(0) = 0
and of course 0 6= 1− (−1) = 2.

11. Suppose
∑
an and

∑
bn are absolutely convergent. Show that

∑
anbn is also absolutely 6

convergent.

Solution. If
∑
an converges, then lim an = 0, so (an) is a bounded sequence. Let’s say

|an| < M for all n. Then we have 0 ≤ |anbn| ≤ M |bn|, and
∑
|bn| is convergent, so∑

M |bn| converges as well, and thus by the comparison test
∑
|anbn| converges too.

Therefore
∑
anbn is absolutely convergent.

12. Suppose (an) is a decreasing sequence of positive terms and
∑
an is convergent, then 6

limnan = 0.



Solution. Consider the partial sums sn =
∑n

k=1 ak. Then, as the sequence (an) is decreas-
ing we have s2n − sn =

∑2n
k=n+1 ak ≥

∑2n
k=n+1 a2n = na2n.Now write s =

∑∞
n=1 an for the

limit of the partial sums, then lim s2n = s = lim sn. Thus

lim s2n − sn = lim s2n − lim sn = s− s = 0.

As 0 ≤ 2na2n ≤ 2(s2n− sn) and lim 0 = 0 = lim 2(s2n− sn) we have lim 2na2n = 0 by the
squeeze theorem.

We have to consider the odd terms in (nan) as well. We can give the same argument
using the floor function bxc which is the largest integer smaller or equal than x. Then we
have

0 ≤ nan ≤ 2an + 2an−1 + · · ·+ 2abn/2c+1 = 2(sn − sbn/2c).

As lim sn = lim sbn/2c = s we can again use the squeeze theorem to obtain limnan = 0.

Examiner resposible: Fokko van de Bult
Examination reviewer: Wolter Groenevelt, Rik Versendaal


