Delft University of Technology Faculty EEMCS Van Mourik Broekmanweg 6, 2628 XE Delft

> Exam part 1 Real Analysis (TW2090) 2-11-2018; 13.30-15.30 Teacher M.C. Veraar, co-teacher K.P. Hart.

- 1. Let (M, d) be a metric space and let $A, B \subseteq M$.
- (5) a. Give the definition of \overline{A} .
- (8) b. Use the definition to prove that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
 - 2. Let (M, d) be a metric space.
- (5) a. Complete the following definition: a set $A \subseteq M$ is totally bounded if
- (10) b. Let $(x_n)_{n\geq 1}$ be a Cauchy sequence in M and let $A=\{x_n:n\geq 1\}$. Show that the set A is totally bounded.
 - 3. Let (M,d) and (N,ρ) be metric spaces and let $f:M\to N$ be a function.
- (8) a. Let $x_0 \in M$ and $y_0 = f(x_0)$. Assume that for every open set $O \subseteq N$ with $y_0 \in O$ the inverse image $f^{-1}(O)$ is open in M. Prove that f is continuous at x_0 .
- (5) b. Complete the following definition: f is uniformly continuous if
- (5) c. Assume that f satisfies the following property: there exist $C, \alpha > 0$ such that for all $x, y \in M$ one has $\rho(f(x), f(y)) \leq Cd(x, y)^{\alpha}$. Use the definition to show that f is uniformly continuous.
 - 4. Let ℓ^1 be the space of all sequences $(f(j))_{j\geq 1}$ such that $||f||_1 := \sum_{j\geq 1} |f(j)| < \infty$. Then ℓ^1 is a vector space.
- (6) a. Show that $\|\cdot\|_1$ is a norm on ℓ^1 .
- (4) b. Assume $(f_n)_{n\geq 1}$ is a Cauchy sequence in ℓ^1 . Deduce that for every $j\geq 1$, $(f_n(j))_{n\geq 1}$ is a Cauchy sequence in \mathbb{R} .
- (8) c. Prove that $(\ell^1, \|\cdot\|_1)$ is complete.
- (12) 5. Assume (M,d) is a compact metric space. Assume $(F_n)_{n\geq 1}$ is a sequence of closed and nonempty subsets of M and assume that $F_{n+1}\subseteq F_n$ for all $n\geq 1$. Use the characterization of compactness in terms of open covers to derive that $\bigcap_{n\geq 1} F_n \neq \emptyset$.

 Hint: Argue by contradiction.
 - 6. Let $f_n:[0,\infty)\to\mathbb{R}$ be defined by $f_n(x)=\frac{nx}{1+n^2x^2}$.
- (4) a. Determine the pointwise limit of $(f_n)_{n\geq 1}$ on $[0,\infty)$.
- (10) b. Determine the intervals on which the convergence is uniform (if any).

The value of each (part of a) problem is printed in the margin; the final grade is calculated using the following formula

 $\mathrm{Grade} = \frac{\mathrm{Total} + 10}{10}$

and rounded in the standard way.