Delft University of Technology Faculty EEMCS Van Mourik Broekmanweg 6, 2628 XE Delft

> Exam part 1 Real Analysis (AM2090) 1-11-2019; 13.30-15.30 Teacher M.C. Veraar, co-teacher K.P. Hart.

- 1. Let (M, d) be a metric space.
- (3) a. Complete the following definition: two metrics d and τ on M are called equivalent if ...

Let $\tau: M \times M \to \mathbb{R}$ be given by $\tau(x, y) = \min\{d(x, y), 1\}$

- (5) b. Show that τ is a metric.
- (5) c. Prove that d and τ are equivalent.
 - 2. Let (M, d) be a metric space.
- (6) a. Give the definitions of the interior and the closure of a set $A \subseteq M$ in terms of open and closed sets. We say that $x \in \text{bdry}(A)$ if for all $\varepsilon > 0$: $B_{\varepsilon}(x) \cap A \neq \emptyset$ and $B_{\varepsilon}(x) \cap A^c \neq \emptyset$.
- (7) b. Prove that $\operatorname{bdry}(A) = \operatorname{cl}(A) \setminus \operatorname{int}(A)$ by using suitable characterizations of $\operatorname{cl}(A)$ and $\operatorname{int}(A)$.
 - 3. Let (M, d) be a metric space.
- (5) a. Complete the following definition: a set $A \subseteq M$ is totally bounded if
- (8) b. Let $(x_n)_{n\geq 1}$ be a sequence in M. Let $A=\{x_n:n\geq 1\}$ and suppose that A is totally bounded. Prove that $(x_n)_{n\geq 1}$ has a Cauchy subsequence.
- (5) 4. a. Complete the following definition: a metric space (X, d) is complete if

Let (M, d) be a complete metric space and let $A \subseteq M$.

- (8) b. Prove that (A, d) is complete if and only if A is a closed subset of M.
- (12) 5. Let (M, d) be a metric space. Prove (ii) \Rightarrow (i) for the following assertions:
 - (i) If \mathcal{G} is any collection of open sets in M with $\bigcup \{G : G \in \mathcal{G}\} = M$, then there are finitely many sets $G_1, \ldots, G_n \in \mathcal{G}$ with $\bigcup_{i=1}^n G_i = M$.
 - (ii) If \mathcal{F} is any collection of closed sets in M such that $\bigcap_{i=1}^n F_i \neq \emptyset$ for all choices of finitely many sets $F_1, \ldots, F_n \in \mathcal{F}$, then $\bigcap \{F : F \in \mathcal{F}\} \neq \emptyset$.
 - 6. Let (M, d) and (N, ρ) be metric spaces.
- (3) a. Complete the following definition: a function $f: M \to N$ is called uniformly continuous if ...
- (5) b. Prove that every Lipschitz function $f: M \to N$ is uniformly continuous.
- (5) c. Give an example of a uniformly continuous function $f : [0,1] \to [0,1]$ which is not Lipschitz continuous (explain your assertions).
 - 7. Let X be a set and let $B(X) = \{f : X \to \mathbb{R} : f \text{ is bounded}\}$. Then B(X) is a vector space. For $f \in B(X)$ let $||f||_{\infty} = \sup_{x \in X} |f(x)|$.
- (6) a. Prove that $\|\cdot\|_{\infty}$ is a norm on B(X).

One can show that $(B(X), \|\cdot\|_{\infty})$ is a Banach space. Now let (X, d) be a metric space and set $C_b(X) = \{f \in B(X) : f \text{ is continuous}\}$. This is a vector space again.

(7) b. Prove that $(C_b(X), \|\cdot\|_{\infty})$ is a Banach space.

The value of each (part of a) problem is printed in the margin; the final grade is calculated using

$$Grade = \frac{Total + 10}{10}$$

and rounded in the standard way.