Short Answer Questions

Remarks: No calculators allowed, grade = $\frac{\text{Total score}}{9} + 1$.

1. The function $f(x) = e^{3x}$ can be written as power series near x = 1: $e^{3x} = c_0 + c_1(x-1) + c_2(x-1)^2 + \dots$ Find c_0, c_1 and c_2 .

$$c_0 = oxed{ c_1 = } oxed{ c_2 = }$$

Answer:

Use the definition of the Taylor series:

$$f(a) + f'(a)(x - a) + \frac{1}{2}f''(a)(x - a)^2 + \dots$$

Apply this with a = 1 and $f(x) = e^{3x}$. Note that $f'(x) = 3e^{3x}$ and $f''(x) = 9e^{3x}$. Plugging in we find:

$$e^{3x} = e^3 + 3e^3(x-1) + \frac{9}{2}e^3(x-1)^2 + \dots$$

2. Write the following complex number in the form a + bi, with $a, b \in \mathbf{R}$:

$$\frac{2i}{3-i} = \boxed{}$$

Answer:

We have:

$$\frac{2i}{3-i} = \frac{2i(3+i)}{(3-i)(3+i)} = \frac{-2+6i}{10} = -\frac{1}{5} + \frac{3}{5}i.$$

3. Find all complex solutions to the equation $z^3 = -2 + 2i$. Leave your answer(s) in polar form.

Answer

Note that $-2 + 2i = \sqrt{8}e^{\frac{3}{4}\pi i}$. Writing $z = re^{i\theta}$ we find that $r^3 = \sqrt{8}$ and $3\theta = \frac{3}{4}\pi i + 2k\pi$ with $k \in \mathbb{Z}$. We find that $r = \sqrt{2}$ and $\theta = \frac{1}{4}\pi + \frac{2}{3}k\pi$. This gives solutions:

$$z_1 = \sqrt{2}e^{\frac{1}{4}\pi i}$$

$$z_2 = \sqrt{2}e^{\frac{11}{12}\pi i}$$

$$z_3 = \sqrt{2}e^{\frac{19}{12}\pi i}$$

4. Let $D \subset \mathbf{R}^2$ be the bounded region bounded by the lines $y = \frac{1}{2}x$ and $y = \sqrt{x}$. Find the correct limits (note the order of integration!).

$$\iint_D f(x,y) dA = \int \int f(x,y) dx dy.$$

Answer:

Note that the lines intersect in (0,0) and (4,2). Sketch of D:

The correct limits are:

$$\int_0^2 \int_{y^2}^{2y} f(x, y) \, dx \, dy.$$

4pt

- 5. Consider the following function: $f(x,y) = \sqrt{xy-1}$.
 - a. Sketch the maximal domain of this function. Clearly indicate which parts belong to the domain and which do not.

Answer:

The maximal domain is given by $D = \{(x,y) : xy \ge 1\}$. The line xy = 1, or equivalently, $y = \frac{1}{x}$ is a hyperbola. We obtain the following sketch:

b. Find $\nabla f(x,y)$

- 1			
- 1			
- 1			
- 1			
- 1			
- 1			
- 1			
- 1			
- 1			
- 1			
- 1			
- 1			
_			

Answer:

$$\nabla f(x,y) = \left\langle \frac{y}{2\sqrt{xy-1}}, \frac{x}{2\sqrt{xy-1}} \right\rangle.$$

c. Find the linearization of f at the point (2,5)

1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			

Answer:

We have

$$L(x,y) = f(2,5) + f_x(2,5)(x-2) + f_y(2,5)(y-5)$$
$$= 3 + \frac{5}{6}(x-2) + \frac{1}{3}(y-5).$$

d. Find the *minimal* value of the directional derivative at the point (2,5).

Answer:

The minimal value is $-|\nabla f(2,5)| = -\sqrt{(\frac{5}{6})^2 + (\frac{1}{3})^2} = -\frac{1}{6}\sqrt{29}$.

6. Match the following graphs of four functions with their graphs of level curves. You do not have to give an explanation.

$$\begin{array}{c} A \rightarrow IV \\ B \rightarrow III \end{array}$$

$$C \to I$$

$$D \to II$$