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OPEN QUESTIONS

Remarks: No calculators allowed, provide explanations and calculations, grade = Total score
9

+ 1.

1. Consider the following series:
∞∑
n=1

n 4n

n2 + 1
x2n.

a.8pt Show that the radius of convergence is 1
2
. Also find the center of convergence.

Answer:
We apply the ratio test. Write an = n4n

n2+1
x2n. Then:∣∣∣∣an+1
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∣∣∣∣ =

∣∣∣∣4n+1

4n

n + 1

n

n2 + 1

(n + 1)2 + 1

x2n+2

x2

∣∣∣∣
= 4x2n + 1

n

n2 + 1

(n + 1)2 + 1

Note that
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It follows that

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 4x2.

The boundaries of the interval of convergence are given by 4x2 = 1, hence x = ±1
2
.

The center is the middle of the interval: x = 0. The radius is the distance of the center
to the boundaries: R = 1

2
.

b.10pt Give the interval of convergence for this series.

Answer:
The series converges on (−1

2
, 1
2
). We have to investigate the boundary points separately.

Note that both at x = −1
2

and at x = 1
2

the series is the same:
∑∞

n=2
n

n2+1
. Note that

an = f(n) with f(x) = x
1+x2 . This function is positive for x ≥ 1. It is also decreasing

for x ≥ 1:

f ′(x) =
x2 + 1− 2x2

(1 + x2)2
=

1− x2

(1 + x2)2
≤ 0

for x ≥ 1.

So we can use the Integral Test.

First we determine an anti-derivative of f . Using the substitution u = 1 + x2 we find:∫
x

1 + x2
dx =

∫
1

2

1

u
du =

1

2
ln |u|+ C =

1

2
ln |1 + x2|+ C.



We find ∫ ∞
1

x

1 + x2
dx = lim

t→∞

∫ t

1

x

1 + x2
dx

= lim
t→∞

1

2
ln |1 + t2| − 1

2
ln(2)

=∞.

The integral diverges, hence so does the sum. We find that the power series diverges
both at x = −1

2
and at 1

2
. Therefore, the interval of convergence is (−1

2
, 1
2
).

c.6pt Let f(x) be the function defined by the series. Show that

lim
x→0

f(x)− x sin(2x)

x4
=

32

5
+

4

3

(
=

116

15

)
.

Answer:
We have:

f(x) = 2x2 +
32

5
x4 + O(x6)

Since sin(y) = y − 1
6
y3 + O(y5), we find that

x sin(2x) = x(2x− 1

6
(2x)3) + O(x6) = 2x2 − 4

3
x4 + O(x6).

So

lim
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3
.

2. Consider the following function: f(x, y) = xyex − y2ex

a.3pt Show that (−2,−1) is a critical point of f .

Answer:

The partial derivatives are:

fx(x, y) = yex + xyex − y2ex = (y + xy − y2)ex

fy(x, y) = xex − 2yex = (x− 2y)ex

Plug in (−2,−1):

fx(−2,−1) = (−1 + 2− 1)e−2 = 0

fy(−2,−1) = (−2 + 2)e−2 = 0.

So (−2,−1) is indeed a critical point for f .

b.6pt Find all other critical points of f , if any.

Answer:



At a critical point the partial derivatives should vanish. Since ex is non-negative for
all x, we get the following set of equations:

y + xy − y2 = 0

x− 2y = 0

From the second we find x = 2y. Plugging this into the first, we obtain:

y + 2y2 − y2 = y + y2 = y(y + 1) = 0.

Hence y = 0, which implies x = 0, or y = −1, which implies x = −2. So only (0, 0) is
another critical point of f .

c.7pt Does f have a local minimum, local maximum or neither at (−2,−1)?

Answer:

To find the type we use the second derivative test. We calculate the second order
partial derivatives:

fxx(x, y) = yex + (y + xy − y2)ex = (2y + xy − y2)ex

fyy(x, y) = −2ex

fxy(x, y) = (1 + x− 2y)ex

We calculate D at (−2,−1):

D = fxx(−2,−1)fyy(−2,−1)− (fxy(−2,−1))2 = −e−2 · (−2e−2)−
(
e−2
)2

= e−4 > 0,

so f has a local minimum or local maximum at this point. Since fxx(−2,−1) = −e−2 <
0, it must be a local maximum.

3. Consider the sequence (an) defined by

{
a0 = 8

an+1 =
√

1 + an

a.5pt Show that the sequence is decreasing.

Answer:
We use induction. Base case: a0 = 8, a1 = 3, so indeed a1 ≤ a0.

Now suppose that for some n we have that an+1 ≤ an. Then 1 + an+1 ≤ 1 + an, and√
1 + an+1 ≤

√
1 + an, since the square root is an increasing function. It follows that

an+2 ≤ an+1. From the base and the induction step we conclude that for all integer
n ≥ 0 we have an+1 ≤ an. So the sequence is decreasing.

b.8pt Explain whether the sequence converges. In case of convergence, find the limit.

Answer:
Note that all elements of the sequence are positive; if an is positive for some n, then
an+1 =

√
1 + an is also positive. Since a0 is positive, it follows by induction that an > 0

for all n.

So the sequence is bounded and decreasing, hence convergent by the Monotone Con-
vergence Theorem. Call the limit L, then we have L =

√
1 + L. Hence L2 = 1 + L,

that is L2−L−1 = 0. It follows that L = 1
2
± 1

2

√
5. Since L > 0, we find L = 1

2
+ 1

2

√
5.
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