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Multiple-choice questions (50%, 22 points)
1. (1 point) Consider the Java implementation of method operation below.

1 public int operation(int n) {

2 int i, j, k = 0;

3 for (i = n / 2; i <= n; i++)

4 for (j = 2; j <= n; j = j * 2)

5 k = k + n / 2;

6 return k;

7 }

Let n be a positive integer. What is the tightest worst-case time complexity of method operation?

A. O(n)

B. O(n log n)

C. O(n2)

D. O(n2 log n)

Answer: The first loop runs exactly n/2 times, so it is O(n). The second loop runs x times, where
n = 2x or x = log2 n, therefore the time complexity is O(log n). This means that the combined
time complexity of the two nested loops is O(n log n).

2. (1 point) Consider that the space complexity of an algorithm X is O(1). Which of the following statements
about algorithm X is false?

A. The time complexity of algorithm X is guaranteed to be O(1).

B. The time complexity of algorithm X is guaranteed to be Ω(1).

C. The space used by algorithm X does not asymptotically depend on the input size.

D. Algorithm X uses a constant amount of space in addition to the input.

3. (1 point) Consider the insertion of n elements (using push operations) in two different array stacks,
stack1 and stack2. For stack1, the array grows when full from capacity C to d 53Ce. For stack2, the
array grows when full from capacity C to C + d 53e. What are the tightest amortized time complexities
of the set of n push operations in these two stacks?

A. stack1: O(n2) stack2: O(n2)

B. stack1: O(n2) stack2: O(n)

C. stack1: O(n) stack2: O(n2)

D. stack1: O(n) stack2: O(n)

Answer: In stack1 the array grows by a factor of 1.66(6), proportional to the array size, leading to
a geometric progression. In stack2 the array size is incremented by a constant value, leading to an
arithmetic progression.

4. (1 point) Which of the following data structures is not suitable to implement breadth-first traversal with
the same tightest big-O time and space complexity than the others?

A. Dynamic array

B. Queue

C. Singly-linked list

D. Stack
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Answer: A queue is appropriate for breadth-first search, since it allows us to visit the nodes per
level. Dynamic arrays and singly-linked lists are also fine since they allow efficient insertion at one
end and efficient removal at the other end (we can easily implement a queue using these elementary
data structures). A stack only allows insertion and removal from one end. This means that we will
access the last visited nodes first, and the last visited nodes are the deepest nodes, which naturally
results in a depth-first traversal. In order to revert this behavior, one would need to use more time
or space.

5. (1 point) Consider a maximum-oriented array-based heap given by the sequence (25, 14, 16, 13, 10, 8, 12).
What is the sequence of elements in the array after two removeMax operations?

A. (14,8,12,13,10)

B. (14,13,12,8,10)

C. (8,14,12,13,10)

D. (14,10,12,13,8)

Answer: Input sequence: (25,14,16,13,10,8,12)

Remove 25: (12,14,16,13,10,8)
Down-bubble: (16,14,12,13,10,8)
Remove 16: (8,14,12,13,10)
Down-bubble: (14,13,12,8,10)

6. (1 point) Consider the partial implementation of class SortedArray below, which maintains a sequence
of integer elements sorted in non-decreasing order.

1 public class SortedArray {

2 private Integer[] array; // array containing the sorted elements

3 private int size; // number of elements in sorted array

4
5 /* ... */

6 public Integer operation(int element) {

7 int a = 0, b = size-1, m = -1;

8
9 while(a <= b) {

10 m = a + (b-a)/2;

11 if (element == array[m]) break;

12 if (element < array[m]) b = m - 1;

13 else a = m + 1;

14 }

15 if (a == size || (b <= a && array[a] != element)) return null;

16
17 int i;

18 if (b > a) i = m;

19 else i = a;

20 int e = array[i];

21
22 for (int k = i+1; k < size; k++)

23 array[k-1] = array[k];

24 size--;

25 return e;

26 }

27 /* ... */

28 }
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What operation is performed by method operation in the Java code above?

A. Search element.

B. Search element index.

C. Insert element.

D. Remove element.

7. (1 point) Consider the method operation from question 6. What kind of search does it perform?

A. Linear search.

B. Brute-force search.

C. Binary search.

D. Multiway search.

8. (1 point) Consider the method operation from question 6. What is its tightest time complexity in
Big-O notation, if n denotes the number of elements size?

A. O(n log n)

B. O(n)

C. O(log n)

D. O(1)

9. (1 point) Which of the following statements on sorting algorithms is false?

A. An algorithm is called stable if it maintains the relative order of identical elements (or elements
with an identical key).

B. Four sorting algorithms ordered by best-case time complexity: insertion sort ≤ quicksort ≤
heap sort ≤ selection sort.

C. The minimum possible time complexity of a comparison-based sorting algorithm is Ω(n log n)
for an input sequence with n elements.

D. Quicksort is the fastest algorithm for sorting 1 million license plate numbers.

Answer:

A. Correct, this is the definition of stability of a sorting algorithm.

B. Correct, insertion sortO(n) ≤ quicksort (typically faster than merge/heap sort)O(n log n) ≤
heap sort O(n log n) ≤ selection sort O(n2).

C. Correct.

D. The fastest algorithm for sorting 1 million license plate numbers is radix sort,
since these numbers are of small length and composed of letters (26-size alphabet
possible) and digits (10-size alphabet), each of which can be used individually as
a key in bucket sort. In this case, radix sort has linear time complexity and is
therefore faster than comparison-based algorithms.

10. (1 point) What is the recurrence equation with n > 1 for the worst-case of the quicksort algorithm,
where n denotes the input size and c1 and c2 are positive integer constants?

A. T (n) = T (n− 2) + c1n + c2

B. T (n) = T (n− 1) + c1n + c2

C. T (n) = T (n/2) + c1n + c2

D. T (n) = 2T (n/2) + c1n + c2
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Answer: The worst case of quicksort occurs when the pivot is always the lowest or highest element
in the array. In this case, quicksort partitioning leads to one subproblem of size 0 and another
subproblem of size n− 1. A recursive call is made for the subproblem of size n− 1. Therefore, the
recurrence is expressed by: T (n) = T (n− 1) + cn, where c is a positive integer constant.

11. (1 point) Consider that the selection sort algorithm is applied to sort the sequence (1,7,6,2,8,4,5,3) in
increasing order. What is the state of the sequence after a number of iterations resulting in 3 swaps?

A. (1,2,3,7,8,4,5,6)

B. (1,2,6,7,8,4,5,3)

C. (1,2,3,4,8,7,5,6)

D. (1,2,3,4,5,7,8,6)

Answer:

Iteration 1 (1,7,6,2,8,4,5,3) 1 sorted 0 swaps
Iteration 2 (1,2,6,7,8,4,5,3) 2 sorted 1 swap
Iteration 3 (1,2,3,7,8,4,5,6) 3 sorted 2 swaps
Iteration 4 (1,2,3,4,8,7,5,6) 4 sorted 3 swaps

12. (1 point) Consider the following fixed size hash table using linear probing (associated values are omitted):

7

0

5

1

0

2 3 4

12

5

6

6

The hash function is h(k) = k mod 7. Which of the following sequences does not denote a valid order
by which the elements could have been inserted into the initially empty hash table?

A. (12,7,6,5,0)

B. (12,6,7,5,0)

C. (6,12,5,7,0)

D. (6,12,7,5,0)

13. (1 point) Consider the following tree:

20

10

5

4

3

6

13

12 14

25

21 26

Which of the following is true?

A. The tree is an AVL tree and can be colored as a red-black tree.

B. The tree is an AVL tree and cannot be colored as a red-black tree.

C. The tree is not an AVL tree and can be colored as a red-black tree.

D. The tree is not an AVL tree and cannot be colored as a red-black tree.
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Answer:

20

10

5

4

3

6

13

12 14

25

21 26

14. (1 point) Consider the following AVL tree:

10

9

8

28

27 37

31 39

How does the insertion of 30 affect the above AVL tree?

A. The insertion does not affect the AVL property.

B. The insertion violates the AVL property, which needs to be fixed with a single rotation.

C. The insertion violates the AVL property, which needs to be fixed with a double rotation.

D. The insertion violates the AVL property, which needs to be fixed with two double rotations.

15. (1 point) What is the maximum possible number of non-null nodes in an AVL tree of depth 4?

A. 8

B. 14

C. 15

D. 16

Answer: The maximum number of nodes is 2h − 1

16. (1 point) Consider the following (2,4) tree.

10

2

0 3 4 6

20 40

11 14 25 30 45 46 50

What is the number of red-black trees that correspond to the given (2,4) tree?

A. 2

B. 3

C. 4

D. 8
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Answer: Note that for each 3-node, there is a choice, but for 2 and 4-nodes there is no choice.

17. (1 point) Consider the following AVL tree:

41

30

20

23

33

65

48

46

41

54

69

99

When deleting 33 from the given AVL tree, how many tri-node restructurings are caused in the tree? If
the node to be deleted has two children, the node will be replaced with the in-order predecessor (i.e. the
maximal node in the left child).

A. No tri-node restructuring.

B. One tri-node restructuring.

C. Two tri-node restructurings.

D. Three tri-node restructurings.

Answer: After removing 33, the node containing 30 becomes unbalanced, which needs to be fixed
by a double rotation (i.e. a tri-node restructuring):

41

30

20

23

65

48

46

41

54

69

99

41

23

20 30

65

48

46

41

54

69

99

In turn, the node containing 40 becomes unbalanced, which needs to be fixed by a double rotation
(i.e. another tri-node restructuring):

40

23

20 30

65

48

46

41

54

69

99

48

40

23

20 30

46

41

65

54 69

99
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18. (1 point) Consider the following weighted graph:

A B C

D E

F

1 2

14

10

10
7

6

When performing Dijkstra’s algorithm starting from vertex A, how many non-infinite distinct labels will
the vertex F have?

A. 1

B. 2

C. 3

D. 4

19. (1 point) Consider the following weighted graph:

A

B

C

D

E

1

2

2

12 10

10

In general, a graph can have multiple minimum spanning trees. How many different minimum spanning
trees does the above graph have?

A. 3

B. 4

C. 5

D. 6

20. (1 point) Consider the following directed acyclic graph (DAG):

A B C

D E

F

In general, DAGs can have multiple topological orders. How many different topological orders does the
above graph have?

A. 2

B. 3

C. 4

D. 5

Answer: Note that A,B,C, F have to appear in order. Then, D can be put either after B or after
C. In the first case, there are three choices for E, in the last case, there are two choices for E.
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21. (1 point) Consider an undirected graph with n vertices and m edges that is a forest. Which of the
following properties is true?

A. m ≤ n

B. m ≤ n− 1

C. m ≥ n

D. m ≥ n− 1

22. (1 point) Assume we need to represent dense graphs, and we are primarily interested in accessing edges,
and removing and inserting vertices. What is the most efficient graph data structure for this purpose?

A. Edge list.

B. Adjacency list.

C. Adjacency map.

D. Adjacency matrix.
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Open questions (50%, 30 points)
23. Consider the following Java implementation of methodX. Assume that the input array a is non-null.

1 public static int methodX(Integer[] a) {

2 int i = 0, n = a.length;

3 while (i < n) {

4 if(a[i] % 2 == 0) {

5 for (int j = i; j < n - 1; j++)

6 a[j] = a[j+1];

7 a[n-1] = null;

8 n--;

9 } else {

10 i++;

11 }

12 }

13 return n;

14 }

(a) (5 points) Write the polynomial expressing the worst-case time complexity of method methodX as
a function of n, where n is the number of elements in array a. Define all variables and constants.
Explain each term of the polynomial by referring to the lines of code.

Answer: The worst-case time complexity occurs in case the array only contains even elements
(i.e. elements for which %2 is 0). The polynomial is:

T (n) = c0 + c1n + c2((n− 1) + . . . + 2 + 1)

= c0 + c1n + c2

n−1∑
i=1

i

where:

n is the number of elements in the input array a;

c0 accounts for the primitive instructions associated with calling methodX (line 1), initializing
i and n (line 2), and returning from methodX (line 13);

c1 accounts for primitive operations within the while loop, including the conditional test
(line 3), the if statement (line 4) which always evaluates to true in the worst-case, the
initialization of j for the for loop (line 5), and the assignment and decrement in lines
7-8.

c2 accounts for operations within the for loop, including conditional and increment of vari-
able j (line 5), and the assignment a[j] = a[j+1] (line 6).

(b) (4 points) Simplify your polynomial expression as much as possible. State the tightest worst-case
Big-O time complexity of methodX as a function of n. You do not have to give a proof, but you
should clearly justify your answer.



CSE1305 Resit Written Exam page 10 of 13 16 April 2019, 18:30–20:30

Answer:

T (n) = c0 + c1n + c2((n− 1) + . . . + 2 + 1)

= c0 + c1n + c2

n−1∑
i=1

i

= c0 + c1n + c2
(n− 1)n

2

= c0 + c1n + c2
n2 − n

2

= c0 +
(
c1 −

c2
2

)
· n +

c2
2
· n2

The constants can be disregarded, since {c0, c1, c2/2} � n. The term n2 grows faster than any
other term in the polynomial when n→∞, therefore the time complexity of method methodX

in Big-Oh notation is O(n2).

(c) (3 points) Consider that the array a given as input to methodX only contains non-null elements.
Explain what the algorithm methodX computes, i.e. what is the content of array a after calling
methodX(a) and what is the return value? Describe a faster solution to perform the same operation
and state its tightest worst-case time complexity.

Answer: The algorithm methodX removes all even elements from array a. When removing an
even element, it shifts the subsequent elements to the left, and pads the end of the array with
a null value. The return value indicates the number of non-null (or odd) elements in array a

after all even elements have been removed.

A faster solution would be to not perform the entire removal of each even element at once, once
found. Instead, when we find an odd element, we can place it immediately next to the last odd
element so that any even elements in between are automatically excluded. In this way, the odd
elements are shifted to the left as needed and the padding of all the remaining positions in the
right part of the array is done at the end. The worst-case complexity of this solution is O(n).

1 public static int removeEven(Integer[] a) {

2 int numOdd = 0, n = a.length;

3 for (int i = 0; i < n; i++)

4 if (a[i] % 2 == 1)

5 a[numOdd++] = a[i];

6 for (int i = numOdd; i < n; i++)

7 a[i] = null;

8 return numOdd;

9 }
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24. Consider the following Java implementation of a recursive algorithm.

1 public static int methodY(int n) {

2 if (n == 0)

3 return 0;

4
5 return 1 + methodY(n - 1) + methodY(n - 1);

6 }

(a) (4 points) State the base and recurrence equation for the time complexity of method methodY as
a function of n. Refer to the relevant parts of the code to justify your answer.

Answer:
T (0) = c0 T (n) = c1 + 2 · T (n− 1)

where:

c0 accounts for the constant time operations in the base case, i.e. calling the method methodY

(line 1), the conditional (line 2), and returning from method methodY (line 3).

c1 accounts for the constant time operations in the recursive case, i.e. calling the method
methodY (line 1), the conditional (line 2), the arithmetic operations (line 5), and returning
from method methodY (line 5).

2 · T (n− 1) accounts for the two recursive calls (line 5).

(b) (6 points) Derive the closed form of the given recurrence equation. You should either:

• derive the closed form solution by repeatedly unfolding the recurrence equation, or

• guess the closed form and prove correctness of your solution by induction.

Answer: Option 1. By repeated unfolding:

T (n) = 2 · T (n− 1) + c1 (by unfolding T (n))

= 2 · (2 · T (n− 2) + c1) + c1 (by unfolding T (n− 1))

= 4 · T (n− 2) + 3c1 (by arithmetic)

= 2k · T (n− k) + (2k − 1)c1 (by repeating k times)

= 2n · T (0) + (2n − 1)c1 (by letting k = n)

= 2nc0 + (2n − 1)c1

= 2n(c0 + c1)− c1

Option 2. By induction:

Closed form solution. The closed form solution of the above recurrence is T (n) = 2n(c0 +
c1)− c1. This can be obtained by repeatedly unfolding T (n) using T (n) = 2T (n− 1) + c1 and
replacing T (0) using T (0) = c0.

Induction proof.
Base case: For n = 0, prove T (0) = c0.

Proof.

T (n) = 20(c0 + c1)− c1

= 1(c0 + c1)− c1

= c0 + c1 − c1

= c0

Induction step: For h > 0, prove T (n) = 2n(c0+c1)−c1 assuming T (n−1) = 2n−1(c0+c1)−c1.
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Proof.

T (n) = 2 · T (n− 1) + c1 (by T (n) = 2T (n− 1) + c1)

= 2 ·
(
2n−1(c0 + c1)− c1

)
+ c1 (by IH T (n− 1) = 2n−1(c0 + c1)− c1)

= 2n−1+1(c0 + c1)− 2c1 + c1 (by arithmetic)

= 2n(c0 + c1)− c1

(c) (2 points) State the tightest worst-case Big-O time complexity of methodY as a function of n. You
do not have to give a proof, but you should clearly justify your answer.

Answer: We previously established that the closed form is T (n) = 2n(c0 + c1) − c1. The
constants in the closed form can be disregarded, therefore the time complexity of method
methodY in Big-Oh notation is O(2n).

(d) (2 points) State the tightest worst-case Big-O space complexity of methodY as a function of n.
You do not have to give a proof, but you should clearly justify your answer.

Answer: The worst-case space complexity of method methodY in Big-Oh notation is O(n)
because the method will make n nested recursive calls until the base case is reached (n decreases
by 1 at each level until it becomes 0). The number of stack frames is therefore proportional to
n, and each stack frame uses a constant amount of space.
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25. Prove that
(
n
2

)2
+ log(2) is O(n4).

(a) (2 points) State in detail the mathematical conditions that should be proven.

Answer: In order to prove that
(
n
2

)2
+log(2) is O(n4), we have to show that there exist positive

constants c and n0, such that:(n
2

)2
+ log(2) ≤ c · n4 for all n ≥ n0.

(b) (2 points) Prove that these conditions hold. Explain all the steps in your proof.

Answer: Let c = 1/4 + log(2) and n0 = 1. When filling out these constants in the formula and
performing some simplification, we obtain:

1/4 · n2 + log(2) ≤ 1/4 · n4 + log(2) · n4

This formula holds for any n ≥ n0 where n0 = 1, because n2 ≤ n4 and 1 ≤ n4 for any n ≥ 1.

End of the exam


