
Delft University of Technology
EEMCS Faculty

CSE1305 Algorithms & Data Structures
Final Written Exam

29 January 2020, 13:30–15:30

Examiners:

Examiner responsible: Joana Gonçalves and Robbert Krebbers
Examination reviewer: Stefan Hugtenburg

Parts of the examination and determination of the grade:

Exam part Number of questions Question specifics
Grade
(%)

Grade
(points)

Multiple-choice 22 questions (equal weights) One correct answer per question 50% 5 · score22
Open questions 3 questions (different weights) Multiple parts 50% 5 · score30

Use of information sources and aids:

• A hand-written double-sided A4 cheat sheet can be used during the exam.
• No other materials may be used, including but not limited to books, lecture slides in any form, or devices

such as laptops and phones.
• Scrap paper sheets are provided at the beginning of the exam. Additional scrap paper can be requested.

General instructions:

• Solve the exam on your own. Any form of collaboration is prohibited.
• You cannot leave the examination room during the first 30 minutes.
• If you are eligible for extra time, place the “Verklaring Tentamentijd Verlenging” on your desk.

Instructions for writing down your answers:

• You should answer the questions using the provided answer sheets.
• Write your name and student number on every sheet of paper.
• For multiple-choice questions, mark the answers on this exam paper first, and copy them to the answer

form after revising.
• For open questions, provide all requested information and always give an explanation. Avoid irrelevant

data, it could lead to deductions.
• For proofs, make sure your proof is properly structured and sufficiently explained. Statements or steps

without justification could lead to point deductions.

CSE1305 Final Written Exam page 1 of 20 29 January 2020, 13:30–15:30

Multiple-choice questions (50%, 22 points)

1. (1 point) Which of the following statements about asymptotic algorithmic complexities is false?

A. n is Ω(1)

B. n is Ω(n log n)

C. 2n+1000 is O(2n)

D. log n is O(n log n)

Answer:

A. True. The function n is larger than a constant when n grows arbitrarily large.

B. False. The function n log n grows faster than n when n grows arbitrarily large.

C. True. 2n+1000 = 21000 · 2n. Since 21000 is a constant, the big-Oh is O(2n).

D. True. The function n log n is an asymptotic upper bound on log n, i.e. grows faster when
n grows arbitrarily large.

2. (1 point) Which of the following statements about asymptotic algorithmic complexities is false?

A. df(n)e is O(f(n)), if f(n) is a positive non-decreasing function that is always greater than 1.

B. If d(n) is O(f(n)), then a · d(n) is O(f(n)) for any constant a > 0.

C. If p(n) is a polynomial in n, then the tightest upper bound for log(p(n)) is O(n log n).

D. h(n) is O(max{f(n), g(n)}) if and only if h(n) is O(f(n) + g(n)).

Answer:

A. True. If f(n) is a positive nondecreasing function greater than 1, then df(n)e ≤ 2f(n).

B. True. There are constants c and n0 such that d(n) ≤ c · f(n) for n ≥ n0. Thus,
a · d(n) ≤ a · c · f(n) for n ≥ n0.

C. False. The tightest upper bound is O(log n). Recall that log nk = k log n.

D. True.

• For O(max{f(n), g(n)}) is O(f(n) + g(n)):
Since max{f(n), g(n)} is either f(n) or g(n), and f(n) ≤ f(n) + g(n) and g(n) ≤
f(n) + g(n) (with f(n) > 0 and g(n) > 0), then max{f(n), g(n)} ≤ f(n) + g(n).

• For O(f(n) + g(n)) is O(max{f(n), g(n)}):
Since f(n) ≤ max{f(n), g(n)} and g(n) ≤ max{f(n), g(n)}, then f(n) + g(n) ≤
2 ·max{f(n), g(n)}.
• SinceO(max{f(n), g(n)}) isO(f(n)+g(n)) andO(f(n)+g(n)) isO(max{f(n), g(n)}),

it follows that O(max{f(n), g(n)}) = O(f(n) + g(n)).

3. (1 point) Consider the Java interface AnInterface below, which defines an abstract data type (ADT)
for one of the data structures studied in this course.

1 public interface AnInterface<E> {

2 public int size();

3 public boolean isEmpty();

4 public E first();

5 public E last();

CSE1305 Final Written Exam page 2 of 20 29 January 2020, 13:30–15:30

6 public void addFirst(E e);

7 public void addLast(E e);

8 public void removeFirst(E e);

9 }

Which of the following data structures cannot be efficiently implemented by only reusing methods from
the data structure that implements this interface AnInterface (no additional methods allowed)? Note
that the data structure implements every method in this interface with O(1) time complexity.

A. Priority queue.

B. Queue.

C. Stack.

D. Circularly-linked list.

Answer: Note that the given interface corresponds to the ADT of a singly-linked list (SLL).

A. A priority queue cannot be implemented efficiently by only reusing this interface,
since it does not allow direct access, insertion, or removal at arbitrary positions
(necessary to insert an element when using a sorted list implementation, or to
retrieve the element with minimal/maximal key when using an unsorted list imple-
mentation).

B. A queue can be efficiently implemented by reusing the methods of this interface. For the
non-trivial methods, enqueue uses addLast and dequeue uses removeFirst. See Section
6.2 “Queues” of the book for the full implementation.

C. A stack can be efficiently implemented by reusing the methods of this interface. For the
non-trivial methods, top uses first, push uses addFirst, and pop uses removeFirst.
See Section 6.1 “Stacks” of the book for the full implementation.

D. A circularly-linked list (CLL) can be efficiently implemented by reusing the methods of
this interface. The only additional operation offered by a CLL relative to a SLL is rotate,
which can be implemented using calls to removeFirst and addLast. The implementation
is not as efficient as the one of an actual CLL, but it does have the same asymptotic time
and space complexities.

4. (1 point) Consider the most time-efficient algorithm that uses O(1) space to calculate and print the sum
of every pair of consecutive elements in a sequence S with n elements. Example: if S = [1, 2, 3, 4, 5], the
algorithm should print the sums 3, 5, 7, 9 corresponding to 1 + 2, 2 + 3, 3 + 4, and 4 + 5. The sequence
can change in between, but its final state needs to be the same as it was before the calculations. What is
the tightest worst-case time complexity of such algorithm when S is implemented using either a fixed-size
array, or a singly-linked list without a tail reference. The list has the following ADT: addFirst(E e),
addLast(E e), removeFirst(), first(), size(). Note that the ADT does not allow direct access
to its nodes, the methods removeFirst and first return the element directly.

A. array: O(n) singly-linked list: O(n)

B. array: O(n) singly-linked list: O(n2)

C. array: O(n2) singly-linked list: O(n)

D. array: O(n2) singly-linked list: O(n2)

Answer:

• Array: The algorithm sums pairs of consecutive elements by accessing their indices directly.
This runs in O(n) time. Sample code:

CSE1305 Final Written Exam page 3 of 20 29 January 2020, 13:30–15:30

1 // create example list

2 int[] array = new int[]{1,2,3,4,5};

3
4 // sum and print

5 for (int i = 1; i < array.length; i++)

6 System.out.print(array[i-1]+array[i]);

• SLL in O(n): One can make sure no more space is required by first repeatedly removing the
first element from the list and adding this as the first element to a new list. This means the
original list shrinks as the new list grows, meaning no extra space is required. This results in
a list in reverse order, so we need to do this a second time to get the list back to its original
order. Sample code:

1 // create example list

2 LinkedList<Integer> list = new LinkedList<Integer>();

3 for (int i = 1; i < 6; i++)

4 list.addLast(i);

5
6 LinkedList<Integer> temp = new LinkedList<Integer>();

7 // sum and print

8 for (int i = list.size(); i > 1; i--) {

9 int first = list.removeFirst();

10 System.out.print(first+list.getFirst());

11 temp.addFirst(first);

12 }

13 temp.addFirst(list.removeFirst());

14 // reverse temp back to original list.

15 for (int i = list.size(); i > 0; i--) {

16 list.addFirst(temp.removeFirst());

17 }

Since this solution is slightly more involved than intended, we have also accepted answer B as
correct.

• SLL in O(n2): The algorithm sums pairs of consecutive elements by removing the first element
first using removeFirst, so that it can also access the second (using first. The first element
is added again to the end of the list using addLast, so that the list will be in the same
state after all elements have been processed. The algorithm repeats these operations for every
position in the list, so O(n) times. Since removeFirst and first are O(1), and addLast is
O(n) (no tail reference), the overall runtime is O(n2). Sample code:

1 // create example list

2 LinkedList<Integer> list = new LinkedList<Integer>();

3 for (int i = 1; i < 6; i++)

4 list.addLast(i);

5
6 // sum and print

7 for (int i = list.size(); i > 1; i--) {

8 int first = list.removeFirst();

9 System.out.print(first+list.getFirst());

10 list.addLast(first);

11 }

12 list.addLast(list.removeFirst());

Note that the method addLast of Java’s LinkedList class is O(1) time. Here we consider
an implementation of LinkedList with O(n) time complexity for addLast.

CSE1305 Final Written Exam page 4 of 20 29 January 2020, 13:30–15:30

5. (1 point) Consider the following Java method calculate.

1 public long calculate(int n) {

2 if (n <= 1)

3 return n;

4 return calculate(n-2) + calculate(n-1);

5 }

What growth rate corresponds to the tightest big-Oh time complexity of method calculate as a function
of the input size n? Tip: look at the number of recursive calls made for different values of n.

A. Logarithmic.

B. Linear.

C. Quadratic.

D. Exponential.

Answer: Method calculate makes at least 2n/2 recursive calls to compute the nth Fibonacci num-
ber, since it recomputes intermediate Fibonacci numbers multiple times instead of doing it once and
reusing the result. See the example in the book for more details (Section 5.5 “Pitfalls of Recursion”).
Define number of calls to calculate nth Fibonacci number as cn:
c0 = 1
c1 = 1
c2 = 1 + c0 + c1 = 1 + 1 + 1 = 3
c3 = 1 + c1 + c2 = 1 + 1 + 3 = 5
c4 = 1 + c2 + c3 = 1 + 3 + 5 = 9
c5 = 1 + c3 + c4 = 1 + 5 + 9 = 15
c6 = 1 + c3 + c4 = 1 + 9 + 15 = 25
c7 = 1 + c3 + c4 = 1 + 15 + 25 = 41
c8 = 1 + c4 + c5 = 1 + 25 + 41 = 67

6. (1 point) Consider again the method calculate from question 5, as well as the method calculate2 pro-
vided below. Which of the following statements is true about methods calculate and/or calculate2?

1 public long[] calculate2(int n) {

2 if (n <= 1) {

3 long[] res = {n, 0};

4 return res;

5 }

6 long[] temp = calculate2(n-1);

7 long[] res = {temp[0]+temp[1], temp[0]};

8 return res;

9 }

A. Method calculate uses tail recursion, while method calculate2 does not.

B. Method calculate2 runs in O(n) time.

C. Method calculate2 uses more stack frames than method calculate.

D. Both methods calculate and calculate2 use binary recursion.

CSE1305 Final Written Exam page 5 of 20 29 January 2020, 13:30–15:30

Answer:

A. False. None of them is tail recursive, since both perform calculations after returning from
the recursive calls.

B. True. Each recursive call to method calculate2 decreases the argument n by 1, therefore
the recursive trace includes a sequence of n method calls. Since the non-recursive work
per call takes O(1) time, the overall runtime is O(n).

C. False. Method calculate2 uses less stack frames, because it makes O(n) recursive calls,
while method calculate makes O(2n) recursive calls.

D. False. Method calculate uses binary recursion because it makes 2 recursive calls (line
5), but method calculate2 uses linear recursion (line 6).

7. (1 point) Which of the following average case time complexities does not involve probability or proba-
bilistic analysis?

A. O(1) for getting an entry from a hashtable.

B. O(1) for adding an element at the end of an array list implemented using a dynamic
array with proportional resizing.

C. O(n) for randomized quick-select.

D. O(n log n) for randomized quicksort.

Answer:

A. The average case for getting an entry from a hashtable has a probabilistic basis: if the
hash function is good, we expect that entries are uniformly distributed in the N cells of
the bucket array. Thus, to store n entries, the expected number of keys in a bucket would
be dn/Ne, which is O(1) if n is O(N).

B. This complexity is the result of amortized complexity analysis, which does not
involve probability. The cost of adding an element at the end of an array list using
a dynamic array is deterministic: we know that it corresponds to the cost O(1) of
adding one element (and occasionally plus the cost O(i) of increasing the array
size if the array is full). The average time complexity is obtained by aggregating
the cost over many insertion operations, such that the cost of the expensive but
occasional resizing operations gets diluted over the insertions.

C. The introduction of randomization in the pivot choice implies that there is a high probability
of choosing good partitions, which in turn leads to an expected time complexity of O(n).

D. Same reasoning as above, but leading to an expected time complexity of O(n log n). See
book Section “13.2.1 Randomized quicksort” for a detailed analysis.

8. (1 point) Which data structures are used for the following tasks: expression parsing (matching parenthe-
ses), and breadth-first search?

A. parsing: stack breadth-first: stack

B. parsing: stack breadth-first: queue

C. parsing: queue breadth-first: stack

D. parsing: queue breadth-first: queue

CSE1305 Final Written Exam page 6 of 20 29 January 2020, 13:30–15:30

Answer: For matching parentheses we use a stack, since each new right parenthesis encountered
needs to be matched to the last or most recently encountered left parenthesis (therefore, we need
LIFO behaviour).
For breadth-first search we use a queue, since we need to explore nodes/vertices in the order they
were first encountered (therefore, we need FIFO behaviour).

CSE1305 Final Written Exam page 7 of 20 29 January 2020, 13:30–15:30

9. (1 point) Which of the following statements presents the implementations of a priority queue from most
to least worst-case time-efficient (left to right) for an insertion operation?

A. Sorted list, unsorted list, heap.

B. Heap, sorted list, unsorted list.

C. Unsorted list, sorted list, heap.

D. Unsorted list, heap, sorted list.

Answer: Sorted list insertion is O(n), since the element needs to be inserted at its final position.
Unsorted list insertion is O(1), since order does not matter, so insertion occurs where it is most
efficient. Binary heap insertion is O(log2 n), bounded by the height of the tree).

10. (1 point) Consider the clone method below for cloning objects of class SinglyLinkedList.

1 public SinglyLinkedList<E> clone() throws CloneNotSupportedException {

2 SinglyLinkedList<E> other = (SinglyLinkedList<E>) super.clone();

3 if (size > 0) {

4 other.head = new Node<>(head.getElement(), null);

5 Node<E> walk = head.getNext();

6 Node<E> otherTail = other.head;

7 while (walk != null) {

8 Node<E> newest = new Node<>(walk.getElement(), null);

9 otherTail.setNext(newest);

10 otherTail = newest;

11 walk = walk.getNext();

12 }

13 }

14 return other;

15 }

Which of the following statements is true about method clone?

A. If a node of the clone list is replaced, the corresponding node in the original list will also change.

B. If an element of the clone list is replaced, the corresponding element in the original list will
also change.

C. If an instance field of an element in the clone list is changed, then the field of the
corresponding element in the original list will also change.

D. If the head of the clone list is changed to point to the tail of the clone list, then the head of
the original list will also point to the tail of the original list.

Answer: The nodes of the cloned list are new, while the elements are the same. This means that
replacing the nodes or the elements of the cloned list does not have an effect on the original list
(note that the element objects are the same, but the references of the nodes to the element objects
are independent), while changing instance fields of an element will change in the original element as
well.

11. (1 point) Consider an array-based implementation of a binary tree. For which kind of binary tree structure
does this implementation use the least space (in absolute terms, not asymptotic)?

A. Proper or full binary tree.

B. Complete binary tree.

C. Balanced binary tree.

D. Degenerate binary tree, in which every internal node has only one child.

CSE1305 Final Written Exam page 8 of 20 29 January 2020, 13:30–15:30

Answer: In an array-based representation of a binary tree, the elements of the tree are stored in an
array-based list such that the element at position p is found at index equal to the level number f(p)
of position p, defined as follows:

• If p is the root, then f(p) = 0.

• If p is the left child of position q, then f(p) = 2f(q) + 1.

• If p is the right child of position q, then f(p) = 2f(q) + 2.

From the definition of each of the binary tree structures in the different options (see below), one
can conclude that all structures except the complete binary tree can lead to an array representation
with empty spaces in between, that is, indexes in the array for which there are no nodes in the binary
tree. This means that they may need to use more space than the number of nodes. The only tree for
which this does not happen is the complete binary tree (a heap is an example of a complete binary
tree).

A. A proper binary tree is a binary tree in which every internal node has either 0 or 2 children.

B. A complete binary tree is a binary tree in which every level, except possibly the last, is
completely filled, and all nodes in the last level are as far left as possible.

C. A balanced binary tree is a binary tree in which the heights of the left and right subtrees
differ by at most one, the left subtree is balanced, and the right subtree is balanced.

D. A degenerate binary tree, as defined, is a tree in which every internal node has only one
child.

12. (1 point) Which of the statements about tree traversals is false?

A. It is possible for the postorder and preorder traversal to visit the nodes of a tree with
more than one node in the same order.

B. It is possible for the postorder and preorder traversals to visit the nodes of a tree with more
than one node in reverse order.

C. It is not possible for the postorder and preorder traversals to visit the nodes of a proper binary
tree in reverse order.

D. The inorder traversal is only defined for binary trees.

Answer:

A. False. It is not possible for the postorder and preorder traversal of a tree with
more than one node to visit the nodes in the same order. A preorder traversal will
always visit the root node first, while a postorder traversal node will always visit
an external node first.

B. True. It is possible for a preorder and a postorder traversal to visit the nodes in the reverse
order. Consider the case of a tree with only two nodes.

C. True. It is not possible for the postorder and preorder traversals to visit the nodes of a
proper binary tree in the reverse order. Let r be the root of a proper binary tree and let
T1 and T2 be the left and right subtrees. A postorder traversal would visit the postorder
traversal of T1, the postorder traversal of T2 and then node r while the preorder traversal
would visit node r, the preorder traversal of T1 and then the preorder traversal of T2.
Clearly the postorder and preorder traversals cannot be the reverse of each other since in
both cases, all the nodes of T1 are visited before all the nodes of T2.

D. True.

CSE1305 Final Written Exam page 9 of 20 29 January 2020, 13:30–15:30

13. (1 point) Consider the sorting of sequence [4, 7, 12, 9, 1, 3] in increasing order with the in-place heap sort
algorithm using an array-based heap. What is the content of the array after the first two removals from
the heap (including any necessary bubbling operations)?

A. [1, 7, 4, 3, 9, 12]

B. [7, 1, 4, 3, 9, 12]

C. [7, 3, 4, 1, 9, 12]

D. [1, 3, 4, 7, 12, 9]

Answer: Original sequence [4, 7, 12, 9, 1, 13]
After building max-heap: [12, 9, 4, 7, 1, 3]
After removal of max (root swaps with last position): [3, 9, 4, 7, 1, 12] (12 swaps with 3)
After down-heap on root (3): [9, 7, 4, 3, 1, 12] (first swap with 9, then swap with 7)
After removal of max: [1, 7, 4, 3, 9, 12] (9 swaps with 1)
After down-heap on root (1): [7, 3, 4, 1, 9, 12] (first swap with 7, then swap with 3)

14. (1 point) Consider the following method csort, which implements a sorting algorithm. The input array
is guaranteed to contain integer values between 0 and k.

1 public static void csort(int[] array, int k) {

2 int temp[] = new int[k + 1];

3
4 for (int e : array)

5 temp[e]++;

6
7 int ndx = 0;

8 for (int i = 0; i < temp.length; i++)

9 while (temp[i] > 0) {

10 array[ndx] = i;

11 ndx++;

12 temp[i]--;

13 }

14 }

Which of the following statements about method csort and the sorting algorithm it implements is true?

A. It is a comparison-based sorting algorithm.

B. It is an in-place sorting algorithm with O(1) space complexity.

C. It runs in O(n) time, where n is the length of the input array.

D. At each index, the array temp accumulates the number of elements from the original
input array that are identical to such index.

Answer:

A. False. It does not perform comparisons, it uses elements as indices of an auxiliary array
temp. The element at each index accumulates the number of elements from the input
array which are identical to such index.

B. False. The algorithm declares a new array with k positions, so it uses O(k) space.

C. False. The algorithm runs in O(n + k) time. This is only O(n) if k is O(n).

D. True.

CSE1305 Final Written Exam page 10 of 20 29 January 2020, 13:30–15:30

15. (1 point) Consider again the method given in question 14. Between method csort and the algorithm
merge sort, which one has the fastest running time in each of the following two situations? First, sorting
1 million bytes. Second, sorting 100 integers in the range between 0 and 1 million.

A. first: merge sort; second: merge sort

B. first: merge sort; second: csort

C. first: csort; second: csort

D. first: csort; second: merge sort

Answer: Merge sort has time complexity O(n log n), while csort runs in O(n + k) time. In the
first situation, n = 106 and k = 256, so csort runs in O(n) time. In the second situation, n = 100
and k = 106; since k = n3, the runtime of csort is O(n3). Merge sort remains O(n log n).

16. (1 point) Which of the following statements about sorting and selection algorithms is true?

A. Heap sort, merge sort, and bucket sort are naturally stable sorting algorithms.

B. The time complexity of insertion sort is O(n + m), where n is the size of the input
sequence and m is the number of inversions. In the worst-case, this can be O(n2).

C. LSD radix sort may not need to process all the individual keys of a composite key in order to
determine the final ordering.

D. The quick-select, merge sort, and quicksort algorithms follow the divide-and-conquer paradigm.

Answer:

A. False. Merge and bucket sort are stable. Heap sort is not, since the order of elements with
the same key cannot be guaranteed due to the bubbling operations.

B. True.

C. False. This is true for MSD, not LSD, since MSD processes keys from the most to the
least significant position. See example given in the lectures.

D. Merge and quick sort use divide-and-conquer, since they both split the input into smaller
sequences and recursively sort those sequences, after which they combine the results into
the result for the larger input sequence. Quick-select uses decrease-and-conquer or prune-
and-search, since it prunes away a portion of the input and then recursively solves the
smaller problem.

CSE1305 Final Written Exam page 11 of 20 29 January 2020, 13:30–15:30

17. (1 point) Which of the statements about hashing is true?

A. If a.hashCode() == b.hashCode() is true, then b.equals(a) should be true.

B. If b.equals(a) is true, then a.hashCode() == b.hashCode() should be true.

C. When only using the get and put operations, hash maps are always better than AVL-trees.

D. When using separate chaining, the load factor can be at most 1.

Answer:

A. Incorrect. That would limit us to Integer.MAX VALUE different entries.

B. Correct. Two objects that are the same should also hash the same.

C. Incorrect. For example, periodic rehashing can be problematic in real-time systems.

D. Incorrect. There can be arbitrarily many entries in the secondary container.

18. (1 point) Consider the following fixed size hash table using linear probing (associated values are omitted):

9

0 1

11

2 3 4 5 6

36

7

16

8

18

9

The hash function is h(k) = (k + 1) mod 10. Assume we first insert an entry with key 27, then delete
the entry with key 16, and then insert an entry with key 6. In which bucket will the inserted entry appear?

A. 1

B. 3

C. 6

D. 8

Answer: After inserting an entry with key 27 (hash code 8), the hash table is:

9

0

27

1

11

2 3 4 5 6

36

7

16

8

18

9

After removing the entry with key 16 (hash code 7), the hash table is:

9

0

27

1

11

2 3 4 5 6

36

7

×
8

18

9

Here, × represents a defunct bucket. When inserting an entry with key 6 (hash code 7), it will
probe until it finds an empty or defunct bucket, which will appear at position 8.

19. (1 point) Consider the following AVL tree:

19

10

8

3

1

9

15

18

30

20

23

40

CSE1305 Final Written Exam page 12 of 20 29 January 2020, 13:30–15:30

When deleting 40 from the given AVL tree, how many tri-node restructurings are caused in the tree?
If the node that is to be deleted has two non-null children, the node will be replaced with the in-order
predecessor (i.e. the maximal node in the left child).

A. None.

B. One tri-node restructuring.

C. Two tri-node restructurings.

D. Three tri-node restructurings.

Answer: After removing 30, we obtain a tree that needs to be fixed by a double rotation, i.e. one
tri-node restructuring:

19

10

8

3

1

9

15

18

30

20

23

19

10

8

3

1

9

15

18

23

20 30

Subsequently, the root needs to be fixed by a single rotation, i.e. another tri-node restructuring:

19

10

8

3

1

9

15

18

23

20 30

10

8

3

1

9

19

15

18

23

20 30

20. (1 point) Consider the following (2,4) tree:

20 25

14

1 2 15 18

22

21 23

34

30 80 90

When deleting 34 from the tree, how many underflows are caused in the tree? If the node of the entry
that is to be deleted has has non-null children, the node will be replaced with the in-order predecessor
(i.e. the maximal entry in the left child of the entry).

A. One underflow, which needs to be fixed by a fusion.

B. One underflow, which needs to be fixed by a tranfer.

C. Two underflows, which need to be fixed by a transfer and fusion.

D. Two underflows, which need to be fixed by two transfers.

CSE1305 Final Written Exam page 13 of 20 29 January 2020, 13:30–15:30

Answer: After removing 34, we end up with:

20 25

14

1 2 15 18

22

21 23

30

80 90

After performing a transfer, we end up with:

20 25

14

1 2 15 18

22

21 23

80

30 90

There are no more underflows in this tree, so we are done.

21. (1 point) Consider Kruskal’s algorithm operating on a graph G = (V,E) where n = |V | is the number
of vertices and m = |E| is the number of edges. Which of the following statements is true?

A. One needs an adaptable priority queue to implement the algorithm.

B. The edge with the highest weight in E is never added to the tree by the algorithm.

C. The union operation on partitions is called O(min(n,m)) times.

D. Kruskal’s algorithm starts with n clusters, and terminates when there is 1 cluster left.

Answer:

A. Incorrect. To implement Kruskal one only needs the insert and removeMin operations,
not the replaceKey operation.

B. Incorrect. Consider a graph E that is already a tree, in this case Kruskal removes no edges.

C. Correct. Each iteration of the algorithm calls the union operation at most once.
The algorithm terminates after either n iterations, or in case the priority queue is
empty. The priority queue initially contains m elements.

D. Incorrect. Consider an unconnected graph. In the lecture we have however only
applied Kruskal on connected graphs, so we have decided to consider this answer
correct when grading the exam.

22. (1 point) Consider the following directed acyclic graph (DAG):

K L

M N Q

J

In general, DAGs can have multiple topological orders. How many different topological orders does the
above graph have?

A. 11

B. 14

C. 17

D. 20

CSE1305 Final Written Exam page 14 of 20 29 January 2020, 13:30–15:30

Answer: In order to enumerate all topological orders, we start with the sequence M,N,L,K, which
has to appear in order. We then insert the vertex Q into the sequence. The vertex Q should appear
after N , so there are 3 choices for inserting Q. We then insert the vertex J into the sequence.
The vertex J should appear before K, so depending on where Q has been inserted there are 4 or
5 choices. In case Q has been inserted before K, there are 5 choices. In case Q has been inserted
after K, there are only 4 choices. This gives 14 choices in total.

CSE1305 Final Written Exam page 15 of 20 29 January 2020, 13:30–15:30

Open questions (50%, 30 points)
23. Consider the following Java implementation of method methodX.

1 public static int methodX(Graph<Integer,Integer> g) {

2 int x = 0;

3 Iterable<Vertex<Integer>> vertices = g.vertices();

4 for (Vertex<Integer> v : vertices) {

5 Iterable<Edge<Integer>> edges = g.outgoingEdges(v);

6 for (Edge<Integer> e : edges) {

7 x += e.getElement();

8 }

9 }

10 return x;

11 }

(a) (5 points) Assume that graph g is implemented using an edge list data structure, and does not have
parallel edges or self-loops. Give the polynomial expressing the tightest worst-case time complexity
of methodX as a function of the number of vertices n, number of edges m, and degree deg(v) of
a vertex v ∈ V of graph g. Define all variables and constants, and explain which lines of code
contribute to each term of the polynomial.

Answer:

T (n) = c0 + c1n + c2nm + c3
∑
v∈V

deg(v)

where:

• c0 accounts for the primitive instructions associated with calling the method methodX (line 1),
assignment of variables x (line 2) and vertices (line 3), and returning from the method
methodX (lines 10);

• c1n accounts for the call to g.vertices (line 5) and the constant-time operations within
the first for loop (line 4-9) and, e.g. assignment of variable edges (line 5);

• c2nm accounts for the call to g.outgoingEdges (line 5). We have c2nm, since the com-
plexity of g.outgoingEdges is O(m) on edge lists, and it appears within the first for loop.

• c3
∑

v∈V deg(v) accounts for the operations within the second for loop (line 7), e.g. the
addition to variable x.

CSE1305 Final Written Exam page 16 of 20 29 January 2020, 13:30–15:30

(b) (2 points) Use the polynomial in your answer to question 23(a) to derive the tightest worst-case
time complexity in Big-Oh notation. You should explain, but you do not need to give a proof.

Answer: The polynomial from the answer to 23(a) can be simplified as follows:

T (n) = c0 + c1n + c2nm + c3
∑
v∈V

deg(v)

≤ c0 + c1n + c2nm + c32m

Here, we make use of
∑

v∈V deg(v) = 2m, which holds because the graph does not have parallel
edges or self loops.

The constants in the simplified polynomial can be disregarded, since {c0, c1, c2, c3} � n,m.
The term nm grows faster than any other term in the polynomial when n,m → ∞, therefore
the time complexity of method methodX in Big-Oh notation is O(nm).

(c) (2 points) If the graph g was implemented using an adjacency list data structure, what would be
the tightest worst-case time complexity of methodX in Big-Oh notation? You do not need to write
down the polynomial nor give a proof, but you should motivate your answer.

Answer: When using an adjacency list, the worst-case time complexity of outgoingEdges(v)
is O(deg(v)). Therefore, the worst-case time complexity of methodX is O(n + m).

CSE1305 Final Written Exam page 17 of 20 29 January 2020, 13:30–15:30

24. Consider the following Java implementation of a recursive algorithm.

1 private static int methodY(int[] data, int i, int n) {

2 if (n == 0) return 0;

3 if (n == 1) return data[i];

4 return methodY(data, i, n/2) + methodY(data, i + n/2, n - n/2);

5 }

6
7 public static int methodZ(int[] data) {

8 return methodY(data, 0, data.length);

9 }

(a) (5 points) State the base and recurrence equations for the worst-case space complexity of the
recursive method methodY. In your answer, clearly state what you consider to be the input size, and
refer to the relevant parts of the code to justify why your equations are correct.

Answer:

S(1) = c0

S(n) = c1 + S(n/2) if n > 1

where:

• n is the input size, expressed as the value of the parameter n;
• c0 accounts for the stack frame in the base case;
• c1 accounts for the stack frame in the recursive case;
• S(n/2) accounts for the recursive calls (line 4).

CSE1305 Final Written Exam page 18 of 20 29 January 2020, 13:30–15:30

(b) (6 points) Derive the closed form of your recurrence equation by repeatedly unfolding it.

Answer:

S(n) = c1 + S(n/2) by S(n) = c1 + S(n/2)

= c1 + (c1 + ·S(n/4)) by S(n/2) = c1 + S(n/4)

= 2c1 + S(n/4) by arithmetic

= kc1 + S(n/2k) repeat k times

= log2 n · c1 + S(1) by letting k = log2 n

= log2 n · c1 + c0 by S(1) = c0

(c) (2 points) State the tightest worst-case space complexity of method methodY in Big-Oh notation.
You do not have to give a proof, but should clearly justify your answer.

Answer: Recall that the closed form is:

S(n) = log2 n · c1 + c0

The constants can be disregarded, since {c0, c1} � n, therefore the time complexity of method
methodY in Big-Oh notation is O(log2 n).

CSE1305 Final Written Exam page 19 of 20 29 January 2020, 13:30–15:30

(d) (2 points) Describe an improved version of methodY, which performs the same calculation as
methodY with better big-Oh worst-case space complexity and the same big-Oh worst-case time
complexity. Give the big-Oh space complexity of your improved solution.

Answer: Method methodY(data,i,n) computes the sum of the first n elements starting at
index i in array data. A more efficient version can be written using a loop:

1 private static int methodY(int[] data, int i, int n) {

2 int sum = 0;

3 for (int k = i; k < i + n; k++)

4 sum += data[k];

5 return sum;

6 }

The space complexity of this version is O(1), and the time complexity remains unchanged.

25. Consider the following (2,4) tree.

10

4

2 6

20 30 40

15 17 25 35 80

(a) (1 point) Give a red-black tree that corresponds to the given (2,4) tree.

Answer:

10

4

2 6

30

20

17

15

25

40

35 80

10

4

2 6

30

20

15

17

25

40

35 80

(b) (1 point) How many different red-black trees correspond to the given (2,4) tree? Explain.

Answer: For each 3-node in the (2,4) tree, there are two choices. The given (2,4) tree has one
3-node, so there are 2 red-black trees that correspond to it.

(c) (2 points) List the properties of AVL trees.

Answer:

• An AVL tree should be a binary search tree. That is, each node with key k satisfies the
following properties:

• Keys stored in the left subtree are less (not equal) than k, and

• Keys stored in the right subtree are greater (not equal) than k.

• An AVL tree should satisfy the AVL balance condition. That is, the heights of the children
of each node differ by at most 1.

(d) (2 points) Is every red-black tree also an AVL tree?

• If you answer “yes”, explain why the properties of AVL trees hold for every red-black tree.

CSE1305 Final Written Exam page 20 of 20 29 January 2020, 13:30–15:30

• If you answer “no”, give a red-black tree as a counter example, and explain which properties of
AVL trees do not hold.

Answer: No. A counterexample is the red-black tree in the answer of question 25(a). This tree
does not satisfy the AVL balance condition, the left subtree of the root has height 3 and the
left subtree of the root has height 5.

End of the exam

