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Multiple-choice questions (35%, 22 points)

Abstract data types

The following Java code shows a partial implementation of a data structure DS, which stores data elements
of type E with keys of type K. Answer questions 1 and 2 below using this code.

1public interface P<K,E> {

2public Entry<K,E> getElement() throws IllegalStateException;

3}

4
5public class DS<K,E> implements ADS<K,E> {

6/* ... */

7
8public Entry<K,E> method1() {

9if (data.isEmpty()) return null;

10return data.first().getElement();

11}

12
13public void method2(K k, E e) {

14P<K,E> p = data.last();

15while (p != null && compare(k, p.getElement().getKey()) < 0)

16p = data.before(p);

17if (p == null)

18data.addFirst(new Entry<>(k, e));

19else

20data.addAfter(p, new Entry<>(k, e));

21}

22}

1. (1 point) The methods method1 and method2 in the Java code above provide specific implementations
of operations defined by an ADT ADS for the class DS. What type of ADT is ADS?

A. Positional list

B. Doubly linked list

C. Priority queue

D. Map

2. (1 point) The above implementation of class DS uses an internal data structure to store its entries. Which
data structure is this?

A. Positional list

B. Doubly linked list

C. Singly linked list

D. Heap

Arrays and lists

3. (1 point) Consider a dynamic array. What is the tightest amortized time complexity of n push operations
(insertions at the end) if the capacity C is doubled whenever the array is full (new capacity is 2C)?
Consider that the initial capacity C0 is much smaller than n.

A. O(log2 n)
B. O(n)
C. O(n log2 n)

D. O(n2)
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4. (1 point) What is the tightest amortized time complexity of n push operations (insertions at the end) if
the capacity C of the dynamic array is instead increased by 5 when the array is full (new capacity C+5)?
Consider that the initial capacity C0 is much smaller than n.

A. O(log2 n)
B. O(n)
C. O(n log2 n)

D. O(n2)

5. (1 point) What is the tightest amortized time complexity of n push operations (insertions at the end) if
the capacity C of the dynamic array is instead increased by dC4 e whenever the array is full (new capacity

C + dC4 e)? Consider that the initial capacity C0 is much smaller than n.

A. O(log2 n)
B. O(n)

C. O(n log2 n)

D. O(n2)

6. (1 point) Consider the problem of finding the middle node in a list l of size n, given that n is odd. Count
the number of accesses to positions of list l needed to find the middle node using the most time-efficient
algorithm, and only O(1) space. If the same position is accessed several times, count each of those
accesses separately. Let x

y denote integer division. How many accesses to positions of list l does the most
efficient algorithm perform to find the middle node by the most efficient algorithm when l is implemented
by an array with a field that stores the size?

A. 1

B. n+ 1

C. n+2
2

D. 3n+2
2

7. (1 point) Consider the problem described in question 6. How many accesses to positions of list l does
the most efficient algorithm perform to find the middle node when l is implemented by a singly-linked list
without a size field?

A. 1

B. n+ 1

C. n+2
2

D. 3n+2
2

8. (1 point) Consider problem described in question 6. How many accesses to positions of list l does the
most efficient algorithm perform to find the middle node when l is implemented by a doubly-linked list
without a size field?

A. 1

B. n+ 1

C. n+2
2

D. 3n+2
2

9. (1 point) Consider the following state of a circularly-linked list cll:

cll = {“Birch”, “Cherry”, “Oak”, “Pine”}

where the tail reference points to the node containing element “Cherry”. What is the state of cll after
the operations removeFirst and rotate are performed, in this order?

A. { “Cherry”, “Oak”, “Pine” }, with the implicit head pointing to “Pine”.

B. { “Birch”, “Cherry”, “Pine” }, with the implicit head pointing to “Pine”.

C. { “Birch”, “Cherry”, “Pine” }, with the implicit head pointing to “Birch”.

D. { “Cherry”, “Oak”, “Pine” }, with the implicit head pointing to “Cherry”.
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Stacks, queues and deques

10. (1 point) Consider a stack with n elements. What implementation is most space-efficient per element
(for large n)?

A. Circular array with capacity n.

B. Dynamic array doubled successively when needed to accommodate for the n elements.

C. Singly-linked list with n nodes.

D. Circularly-linked list with n nodes.

11. (1 point) Consider the following sequence of operations, on an initially empty stack:

{push(5), push(3), pop(), push(2), push(8), pop(), size(), push(1), pop(), pop(), pop()}.

Which sequence of values is returned by this sequence of operations?

A. { - , -, 3, - , -, 8, 3, -, 1, 2, 5}
B. { - , -, 3, - , -, 8, 2, -, 1, 2, 5}
C. { - , -, 3, - , -, 8, 2, -, 1, 3, 5}
D. { - , -, 5, - , -, 3, 2, -, 2, 8, 1}

12. (1 point) Consider an implementation of a queue with n elements using a bounded, circular array with
capacity C. Let f be the index indicating the front of the queue. What is the next available index for an
enqueue operation?

A. (n+ 1)%C

B. (f + n− 1)%C

C. (f + n)%C

D. (f + n+ 1)%C

Heaps and priority queues

13. (1 point) Consider an implementation of a priority queue with a sorted list. Which operation establishes
the ordering of the keys?

A. insert

B. removeMin

C. min

D. A priority queue needs to be explicitly sorted using the sort method.

14. (1 point) Consider that a heap of height h has k entries in the last level. How many nodes does the heap
have in total?

A. 2h + k

B. 2h − 1 + k

C. 2h−1 + k

D. 2h−1 − 1 + k

15. (1 point) Consider the bottom-up construction of an array-based heap. What happens after the first
phase in which all entries are added to the array?

A. Down-heap bubbling from the root node.

B. Down-heap bubbling from all nodes except the ones in the last level, starting from the root
node and ending at the last node in the last but one level.

C. Down-heap bubbling from all nodes except the ones in the last level, starting from the
last node in the last but one level and ending up at the root node.

D. Up-heap bubbling from the root node.
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Sorting

Consider the following Java code that implements a sorting algorithm. Answer questions 16, 17, and 18 based
on this code.

1public static void sort(int[] data) {

2sort(data, 0, data.length - 1);

3}

4
5public static void sort(int[] data, int low, int high) {

6int i = low, j = high;

7int y = data[low + (high-low)/2];

8
9while (i <= j) {

10while (data[i] < y) i++;

11while (data[j] > y) j--;

12if (i <= j) {

13swap(data, i, j);

14i++;

15j--;

16}

17}

18
19if (low < j) sort(data, low, j);

20if (i < high) sort(data, i, high);

21}

16. (1 point) Which sorting algorithm is implemented by method sort in the Java code above?

A. Selection sort

B. Merge sort

C. Quick sort

D. Heap sort

17. (1 point) Is the implementation of method sort in the Java code above in-place or not in-place?

A. Not in-place

B. In-place

18. (1 point) Let n be the size of the array data received as input by the method sort in the Java code
above. What is the tightest worst-case space complexity of method sort?

A. O(n)
B. O(log2 n)
C. O(1)
D. O(n2)
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Trees

Consider the following trees Tree 1 and Tree 2. Answer questions 19, 20, and 21 based on these trees.

30

12

6

5 7

15

14 16

80

60

29 72

30

12

6 15

80

60

40 72 80

95

Tree 1 Tree 2

19. (1 point) Select the correct statement describing properties of Tree 1.

A. Tree 1 is both complete and a binary search tree.

B. Tree 1 is complete, but not a binary search tree.

C. Tree 1 is not complete, but it is a binary search tree.

D. Tree 1 is neither complete nor a binary search tree.

20. (1 point) Consider the result {5, 7, 6, 14, 16, 15, 12, 29, 72, 60, 80, 30} of performing a traversal through
Tree 1. Which kind of traversal was performed?

A. In-order traversal

B. Breadth-first traversal

C. Pre-order traversal

D. Post-order traversal

21. (1 point) Consider the result {30, 12, 80, 6, 15, 60, 95, 40, 72, 80} of performing a traversal through Tree
2. Which kind of traversal was performed?

A. In-order traversal

B. Breadth-first traversal

C. Pre-order traversal

D. Post-order traversal

22. (1 point) How many different min-heaps exist with the set of keys {1, 3, 10, 12}?
A. 2

B. 3

C. 4

D. 5

Answer: The only choice at the first level is 1. At the second level, we can put either 3, 10 or 10, 3
or 3, 12. Given the choice for the second level, there is a single choice for the third level.
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Open questions (35%, 12 points)
23. Consider the following implementation of methodX. Let the time complexities of methods insert and

removeMin be O(1) and O(k), respectively, where k denotes the number of entries in priority queue P.
ArrayList methods used in this code have the following time complexities: size and add are O(1),
remove as used in the code is O(1) since it always removes at the end. Assume that the priority queue
P is empty when methodX is called.

1public static <E> void methodX(ArrayList<E> S, PQ<E, Object> P) {

2int n = S.size();

3for (int j = n-1; j >= 0; j--) {

4E element = S.remove(j);

5P.insert(element, null);

6}

7for (int j = 0; j < n; j++) {

8E element = P.removeMin().getKey();

9S.add(element);

10}

11}

(a) (3 points) Write down the polynomial expressing the time complexity of methodX. Define all vari-
ables and constants, and explain which lines of the code each term of the polynomial refers to.

Answer:

T (n) = c0 + c1n+ c2(n+ (n− 1) + . . .+ 2 + 1)

= c0 + c1n+ c2

n∑
i=1

i

= c0 + c1n+ c2
n(n+ 1)

2

where:

n is the number of elements in the input list S;

c0 accounts for the primitive instructions associated with calling the method methodX (line
1), declaring and initializing variables n (line 2) and j (lines 3,7), and returning from the
method methodX (line 11);

c1 accounts for operations within the first for loop, including conditional test and decrement
on j (line 3), operation remove and assignment to variable element (line 4), and operation
insert (line 5).

c2 accounts for operations within the second for loop, including conditional test and incre-
ment of j (line 7), operation add (line 9) and assignment of the result of removeMin to
variable element (line 8).

(b) (1 point) Simplify your polynomial expression as much as possible. Derive the tightest worst-case
time complexity in Big-Oh notation.

Answer:

T (n) = c0 + c1n+ c2
n(n+ 1)

2

= c0 + c1n+ c2
n2 + n

2

= c0 +
(
c1 +

c2
2

)
n+

c2
2
n2
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The constants can be disregarded, since {c0, c1, c2} � n. The term n2 grows faster than any
other term in the polynomial when n→∞, therefore the time complexity of method methodX

in Big-Oh notation is O(n2).

(c) (11/2 points) Describe a more efficient solution for the problem addressed by the method methodX.

Answer: The algorithm methodX sorts an input sequence S with n elements using a priority
queue P implemented by an unsorted list, with time complexityO(n2). Both heap sort and merge
sort would provide faster solutions, with worst-case time complexity O(n log2 n). Quicksort
would also run faster on average, with an expected runtime of O(n log2 n), worst-case O(n2).

24. Consider the following method size, which calculates the number of nodes in a tree:

1public static int size(Node node) {

2if (node == null)

3return 0;

4
5return 1 + size(node.getLeft()) + size(node.getRight());

6}

(a) (2 points) State the base and recurrence equation for the time complexity of method size in terms
of the height h of the tree rooted at node node. Refer to the relevant parts of the code to justify
why your equations are correct.

Answer:
T (0) = c0 T (h) = 2 · T (h− 1) + c1

where:

c0 accounts for the constant time operations in the base case, i.e. calling the method size

(line 1), the conditional (line 2), and returning from method size (line 3).

c1 accounts for the constant time operations in the recursive case, i.e. calling the method size

(line 1), the conditional (line 2), the arithmetic operations (line 5), and returning from
method size (line 5).

2 · T (h− 1) accounts for the two recursive calls (line 5).

(b) (3 points) Derive the closed form of your recurrence equation. You should either prove the correct-
ness of your solution by induction, or you should provide a detailed derivation of how your solution
can be obtained by repeatedly unfolding the recurrence equation.

Answer:

Option 1. By repeated unfolding:

T (h) = 2 · T (h− 1) + c1 (by unfolding T (h))

= 2 · (2 · T (h− 2) + c1) + c1 (by unfolding T (h− 1))

= 4 · T (h− 2) + 3c1 (by arithmetic)

= 2k · T (h− k) + (2k − 1)c1 (by repeating k times)

= 2h · T (0) + (2h − 1)c1 (by letting k = h)

= 2hc0 + (2h − 1)c1

= 2h(c0 + c1)− c1

Option 2. By induction:
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Closed form solution. The closed form solution of the above recurrence is T (h) = 2h(c0 +
c1)− c1. This can be obtained by repeatedly unfolding T (h) using T (h) = 2T (h− 1) + c1 and
replacing T (0) using T (0) = c0.

Induction proof.
Base case: For h = 0, prove T (0) = c0.

Proof.

T (h) = 20(c0 + c1)− c1

= 1(c0 + c1)− c1

= c0 + c1 − c1

= c0

Induction step: For h > 0, prove T (h) = 2h(c0+c1)−c1 assuming T (h−1) = 2h−1(c0+c1)−c1.

Proof.

T (h) = 2 · T (h− 1) + c1 (by T (h) = 2T (h− 1) + c1)

= 2 ·
(
2h−1(c0 + c1)− c1

)
+ c1 (by IH T (h− 1) = 2h−1(c0 + c1)− c1)

= 2h−1+1(c0 + c1)− 2c1 + c1 (by arithmetic)

= 2h(c0 + c1)− c1

(c) (1/2 point) State the tightest worst-case time complexity in terms of the height h of the tree in
Big-Oh notation.

Answer: We previously established that the closed form is T (h) = 2h(c0 + c1) − c1. The
constants in the closed form can be disregarded, therefore the time complexity of method size

in Big-Oh notation is O(2h).

(d) (1 point) State the base and recurrence equation for the space complexity of method size in terms
of the height h of the tree. Refer to the relevant parts of the code to justify why your equations are
correct.

Answer:
S(0) = c0 S(h) = S(h− 1) + c1

where:

c0 accounts for the stack frame associated with calling the method size in the base case.

c1 accounts for the stack frame associated with calling the method size in the recursive case.

S(h− 1) accounts for the recursive calls (line 5). Note that unlike the case of time complexity,
we have S(h− 1) instead of 2 · S(h− 1) since the space of the first recursive call can be
reused by the second.

Implementation questions (30%)
There are two implementation questions on Weblab.

End of the exam


