Web and Database Technologies - Q2 2022/23 - Midterm

CSE 1500 - Solutions

Task	max
1 Conceptual Modelling	18
2.1 Convert Conceptual to Logical	12
2.2 Functional Dependencies & Logical	10
3.1 FDs & Normalization	(3x3=)9
3.2 Normalization	7
4 SQL	27
Overall	83

1. Conceptual Modelling

2. Logical Relational Schema

2.1. Convert Conceptual to Logical

1st Solution

Station (Name, City, Type, Cost, Construction_Company -> Construction Company(Name))

Construction Company (Name, Type, Year Established)

Bus (ID, Bus Station -> Station(Name, City), Model)

Route (<u>Start Station -> Station(Name, City), End Station -> Station(Name, City), Month, Daily Frequency)</u>

2nd Solution

Bus_Station (Name, City, Cost, Construction_Company -> Construction Company(Name))

Train_Station (Name, City, Cost, Construction_Company -> Construction Company(Name))

Tram_Station (Name, City, Cost, Construction_Company -> Construction Company(Name))

Construction Company (Name, Type, Year Established)

Bus (ID, Bus Station -> Bus Station(Name, City), Model)

Route (<u>Start Station -> Tram Station(Name, City)</u>, <u>End Station -> Tram Station(Name, City)</u>, <u>Month</u>, Daily Frequency)

3rd Solution

Station (Name, City, Cost, Construction_Company -> Construction Company(Name))

Bus_Station (ID -> Station(Name, City))

Train_Station (ID -> Station(Name, City))

Tram Station (ID -> Station(Name, City))

Construction Company (Name, Type, Year Established)

Bus (ID, Bus Station -> Bus Station(ID), Model)

Route (Start Station -> Tram Station(ID), End Station -> Tram Station(ID), Month, Daily Frequency)

2.2. Logical Relational Schema from Functional Dependencies

R₁ (<u>A</u>, B, C)

 $R_2(D, A -> R_1(A), E)$

R₃(<u>F, G</u>, H)

 $R_4(I, J, FK R3 -> R_3(F, G), K, L)$

Rel (<u>FK R2 -> R_2 (D, A), FK R3 -> R_3 (F, G), O</u>, P)

3. Functional Dependencies and Normalization

3.1. Multiple-Choice: Functional Dependencies & Normalization

- 1. A
- 2. B
- 3. C

3.2. Normalization

3.2.1

TrainID -> TrainCompany

OperatorID -> OperatorName

 $\{ TrainID, OperatorID, Date, EndCity \} -> StartCity$

3.2.2

TrainID	TrainCompany
NS12	NS
SNCB43	SNCB
DB-1214	DB
DB-5432	DB

OperatorID	OperatorName
A123	John Smith
B234	Mary Bell
AF11	Andrew Fall
SB-90	Sophie Braun

TrainID	OperatorID	StartCity	EndCity	Date
NS12	A123	Amsterdam	Delft	12/8/2021
NS12	B234	Amsterdam	Delft	3/5/2022
SNCB43	AF11	Brugge	Ghent	3/2/2022
SNCB43	AF11	Brussels	Liege	1/9/2022
SNCB43	AF11	Brugge	Liege	8/10/2022
SNCB43	AF11	Brussels	Ghent	1/9/2022
DB-1214	SB-90	Berlin	Koln	11/8/2021
DB-5432	SB-90	Frankfurt	Dusseldorf	23/5/2022
DB-5432	SB-90	Frankfurt	Dusseldorf	13/8/2022

4. SQL

1. **SELECT** s.name, **SUM**(pc.count) as passenger count FROM Station's JOIN PassengerCount pc ON s.s id=pc.s id WHERE year = 2021**GROUP BY** s.name (4 points) 2. **SELECT DISTINCT** start station.name, end station.name FROM (((TrainLine tl JOIN Station start station ON tl.start=start station.s id) JOIN Station end station ON tl.end=end station.s id) **JOIN** Stop s **ON** tl.tl id=s.tl id) JOIN Station stop station ON s.station=stop station.s id WHERE s.stop nr = 5 AND stop station.city = 'Rotterdam' (6 points) 3. **SELECT** f.name FROM Facilities f JOIN st2fac sf ON f.f id=sf.f id **GROUP** BY f.f id, f.name **HAVING** (MAX(sf.capacity) - MIN(sf.capacity)) <=10 4. **SELECT** tl.tl id, **COUNT DISTINCT** (s.station) FROM TrainLine tl JOIN Stop s ON tl.tl id=s.tl id WHERE tl.start = tl.end **GROUP BY** tl.tl id 5. **SELECT AVG**(pc.count) as avg passenger count FROM Station s JOIN PassengerCount pc ON s.s id=pc.s id WHERE pc.month = 3 AND pc.year = 2022 AND (pc.dayOfWeek= 5 OR pc.dayOfWeek=6) **AND** s.name = 'Delft Station' 6. **SELECT** s.city FROM Station s JOIN st2fac sf ON s.s id=sf.s id **GROUP BY** s.city **HAVING COUNT(DISTINCT** s.s id) >= 2 **AND COUNT(DISTINCT** sf.f id) < 5