
Exam CS2115
Software Engineering Methods

Delft University Of Technology
January 29, 2021 - 9:00-11:00

Please, read these instructions carefully. Failure to comply with any of the
instructions means invalidating your exam.

The exam consists of six open questions that cover the context of the course. Be
aware that the exam questions are designed to prevent plagiarism and student
collaborations using variants and by introducing subtle differences across the
variants. We will also use plagiarism detection tools to identify possible
plagiarized text and potential frauds.

Potential plagiarism and frauds will be reported to the Board of Examiners.

---

1. Consider the following scenario (Carpooling Management System):
In 2020, a group of 3 recent graduate students from the Master in Computer
Science at TU Delft decided to create a startup, aiming to provide high-tech
digital services using cutting-edge software technology.

Amtech is an American company interested in giving a carpooling service in the
Netherlands and hired the startup to develop CarPSys, a Car Pooling
Management System. The solution consists of two parts, a management platform
for monitoring the service and a mobile application (for drivers and consumers).
During the first stage of the project, the goal is to develop a working prototype
(for the entire solution) and launch a mobile application only for people within the
Randstad area (four largest Dutch cities).

Amtech's CEO, Ellie Martin, wants to evaluate if the solution is scalable and
profitable. Since most people in the Netherlands care about preserving the
environment, there is an excellent first impression of the project's sustainability.



However, other managers in Amtech are sceptical about the viability of the
project. They want to have access to financial reports to identify the profitability of
the carpooling service.

The Customer Relationship (CR) manager's primary concern is on delivering a
reliable service. Collecting feedback from consumers about the service is a
priority for his team. Additionally, CarPSys's customers should reach Amtech
through its Contact Center (CC) platform, which unifies all communication
channels, i.e., phone calls, text messages, social media messages, etc. The CC
manager should ensure that the information regarding customer inquiries and
answers is preserved and available to other departments in Amtech who might
need it.

Maarten Boekema, Amtech's CTO (Chief Technical Officer), has assumed the
project's responsibility and is the main point of contact between the startup and
Amtech. Under some pressure from Ellie and other managers, and after several
discussions with them, Maarten has started identifying the system's requirements
but has quickly got out of his depth. With a proven background in business
analysis and software engineering, he has now hired you to continue the work.
The initial working prototype (system) should satisfy Amtech's management's
demands and consider the most relevant set of features to guarantee excellent
carpooling service.

The requirements Maarten has identified so far are:

1. The system should provide daily financial reports to management.
2. The system should provide weekly reports to CR managers regarding the

overall customer perception of the service.
3. Users (drivers and passengers) should register in the system through the

mobile application.
4. Users (drivers and passengers) should log in and be able to share content on

social media.
5. Drivers should publish their trip on the application to find passengers to share

the ride with.
6. The mobile application should support Android and iOS users.
7. The service should work smoothly and guarantee a 99.99% up-time.
8. Users should authorize sharing content on social media, and this should not

be done automatically.
9. Passengers should be able to join the driver's trip and agree to all conditions

specified (i.e. price).



10. Users should be able to modify their profile information.
11. The system should ensure the privacy of its users. Trips, social media

accounts, and profile information are sensitive data.
12. Both the driver and passenger should be able to rate each other to gain

reputation.
13. The system should offer a rapid response time for both drivers and

passengers.
14. Drivers should be able to create a new trip to be displayed when passengers

search for trips.
15. Passengers should be able to find a driver for a destination, when one exists.

When passengers find a suitable trip, they can make a reservation, and a
notification is sent to the driver.

16. Passengers should be allowed to specify their travelling preferences.
17. When either drivers or passengers arrive at the meeting point at the time

agreed upon, they should check-in to notify the other user of their arrival.
18. Drivers should be able to register a frequent trip, indicating the origin and

destination, departure and return times, as well as the frequency (daily or
weekly).

19. Passengers should be able to search for a frequent trip that they can join.
Passengers should specify the departing neighbourhood, destination,
departure times, and frequency.

20. Only authorized users should be allowed to post and edit their information.
21. The system should match passengers' trip preferences with the best trip

created by a driver.
22. Payments for the trips go through the mobile application.
23. The system should allow passengers to pick the meeting points in a map

through the mobile application.
24. The system should support a high increment in the number of users

appropriately. For instance, from 10 000 users to 100 000 users.

QUESTION: Please answer the following questions:

a. Having examined the initial set of requirements mentioned in the scenario,
you now have the opportunity to begin your investigation.

In the case of Amtech's management (CEO, CTO, and CRM team),
What suitable techniques would you suggest for eliciting and exploring
their requirements?
In each case, justify your choice of elicitation technique.



b. For this section, examine ONLY the first eight (1 to 8) requirements
(proposed by Maarten) and identify which of them (or which parts of them)
are Functional (FR) and which are Non-Functional (NFR). For the NFRs
identify to which category they belong.

Also, highlight any ambiguity in the requirements and indicate what is
missing to complete the requirement’s specification.
If any requirements appear to be in conflict with one another, document
that too.

Answer 1-a.
We should use an interview with the CEO to understand the objectives of the
project and to discuss why she wants the system to be scalable and how
profitable she wants the application to be.

We can use an interview with the CTO to discuss her perspective on the project
and I would better assert what data they want to be stored for both drivers and
passengers.

We should use a workshop with the CRM team to brainstorm ideas on how to
collect valuable feedback from the clients.

In the end, we should use a final workshop with the Management Team to
discuss and record all the final requirements, to be sure that they all agree or
come to a common point of view.

Answer 1-b.

● "The system should provide daily financial reports to management." is
an FR.

● "The system should provide weekly reports to CR managers regarding
the overall customer perception of the service" is an FR. "weekly"

○ Here we could benefit from a more detailed requirement on what
the application should measure in terms of customer perception.

● "Users (drivers and passengers) should register in the system through
the mobile application." is an FR

● "Users (drivers and passengers) should log in and be able to share
content on social media." is an FR

● "Drivers should publish their trip on the application to find passengers to
share the ride with." is an FR.

● "The mobile application should support Android and iOS users." is an
NF-organizational requirement

● "The service should work smoothly and guarantee a 99.99% up-time." is



an NFR.
○ Usability and availability. Both are ambiguous, we don't know

what smoothly means and we need a more detailed description.
● "Users should authorize sharing content on social media, and this

should not be done automatically." is an NFR., External requirement.

2. For this question, consider the prior scenario in Question 1 (Carpooling
Management System) and the extension below:

Figure 1: High-Level System Architecture

After several discussions between you, Maarten, and the startup team, the
project has been divided into two stages. In the first stage, the focus is on
developing the infrastructure to support the users' requirements (drivers and
passengers). The second stage will include the features requested by Amtech's
management. However, the initial architecture design should also support
management requirements to avoid critical migration during the second stage.

For the first stage, the startup has proposed the architecture depicted in Figure 1.
Bold arrows denote a secured connection using TLS (Transport Layer Security).
Other connections represented by thin arrows occur in the Local Area Network
(LAN), except for the HTTP request in a TLS tunnel.



The architecture proposed is a variant of the 3-Tier pattern. The application
architecture has been chosen according to the previously specified requirements.
The backbone of the application consists of a cluster of servers. A proxy has the
responsibility of distributing the workload over the servers in the cluster. The
cluster configuration allows adding as many servers as needed. A second load
balancer (proxy) has been included in case one of them is down. In the
Persistence tier, a primary database receives requests for retrieving and storing
data. The architecture considers a replication strategy as well. For that purpose,
the design includes a secondary database. Both databases exchange heartbeats
for letting each other know its availability. In case of any incident with the primary
database, the second database takes over the operations. A data redundancy
strategy has also been taken into consideration to avoid data loss.
The business logic tier exposes a RESTful API that can be consumed by any
REST client. The data exchanged will be formatted using JSON.
The client tier supports Android and iOS. The Android/iOS mobile application
communicates with the server using TLS.
Finally, The system interacts with Facebook (Sharing service) by using
Facebook's APIs (web services).

QUESTION: Please answer the following questions:

a. Were quality attributes such as Performance and Scalability taken into
account when choosing the architectural pattern? Why? (Motivate your
answer describing explicitly your rationale and state your assumptions
clearly).

b. Do you agree with the initial architectural design proposed by the startup?
Why? What would you have changed in the architecture? (Motivate your
answer considering ONLY the quality attributes mentioned in (a),
present your arguments and state your assumptions clearly).

Answer 2-a.

Performance - Although in general, the layered approach can mean requests
are made all through the same chain all the time, here certain responsibilities
have been taken to avoid slowness: the client directly connects to the external
APIs (no need to request them from the proxy + business logic tier,
unnecessary overhead). The proxies also ensure they won't be times of
random or unexpected slowness or going down. This would be a lot more
frustrating for users, especially those that have important destinations to reach



a deadline.

Regarding scalability, we take it into account when services can run on
different servers within an environment. Thus, the system will manage the
situation when it will have to increase the load quickly, without losing the
performance. However, if scalability is the main quality attribute to consider,
there are more scalable architectures that could have been considered. For
example, the SOA (Service - Oriented Architecture) will have higher scalability
since services can run on different servers within an environment, or in
Publish-Subscriber Pattern we will also have higher scalability since we can
have as many publishers or subscribers we want.

Answer 2-b.

A better choice is to use the SOA because in this kind of scenario we will care
about the performance and scalability. On the other hand, we can assume that
in the future new features will be added; hence, an SOA version is very
suitable for it.

Moreover, because using SOA we can scale everything very easy and we can
use as messages JSON format between the services and as a registry, we will
have a list of all available services, used by the service to discover other
services to use. Furthermore, the system will not have a worse performance by
using this architectural pattern.

3. Consider the following scenario:
“We want to implement an online system for a large international bank. The
system should allow users (bank customers) to create and monitor their
investments. Users should be able to create multiple types of investments with
different markets (e.g., European market, US market, etc.)
Each market has a portfolio of investment types:

● Saving accounts
● Bonds
● Stocks
● Insurances.

Each investment has an interest rate, risk level, and duration. These investment
attributes vary across investment types (e.g., savings accounts have lower
interest rates than bonds) and across the market.



For example, if the user wants to invest in bonds in the European market, then
the system should create European bonds with its specific attributes (low-interest
rate, low risk level, short duration). If the user wants to invest in stocks in the US
market, the system should create US stocks with their specific attributes.

We want to design the system in such a way that it allows us to model all
possible combinations between markets and the types of investments with
minimum code duplication. We also want to make the system open for future
extensions (i.e., adding more markets and more types of investments).”

Part 1: Which design pattern fits best in the implementation of this system?
Please explain your choice.

Part 2: For the given design pattern of your choice (part 1),  indicate
● The classes (the role, class name, attributes, and method names) you

would write to implement the design pattern
● The type of association for each pair of classes/interfaces.

Answer 3-a.
The most suitable pattern is Abstract Factory because a system should be
independent of how its products are created, composed, and represented.
Basically, we will have a factory for investments and we will have a factory for
the markets. Moreover, we want to provide a class library of products, and I
want to reveal just their interfaces, not their implementations. Thus, multiple
models can be added in the future.

Answer 3-b.
Component: Investment
- Role: the Client
- Methods: createMarket(), createPortofolio()

Component: Market
- Role: Abstract product
- Methods: createMarket(), createPortofolio()

EUMarket
- Role: Concrete Product
- Methods: createProduct()
- Association: It extends (inherits) the classMarket



UsMarket
- Role: Concrete Product
- Methods: createProduct()
- Association: It extends (inherits) the classMarket

Portofolio
- Role: the AbstractFactory
- Methods: createMarket(), createProtofolio()

- Role: Concrete Product
- Methods: createProduct()
- Association: It extends (inherits) the classProtofoliou

4. Consider the coverage matrix (rows are test cases and columns are branches)
depicted in Table 1.

IMPORTANT: To avoid fraud and student cooperation during the exam, you have
to adapt the coverage matrix based on your student number. Complete the
coverage matrix based on the instructions below:

Mark with “x” the entries in the grey area of the table whose test case index
corresponds to the last three digits of your student number. For example, if your
student number is XXX521, you have to mark with “x” the entries [t5, b1], [t2, b1],
and [t1, b1].

If one of the last three digits of your student number is zero you ignore that digit.
For example, if your student number is XXX520, you have to mark with “x” the
entries [t5, b1], and [t2, b1].

If the last three digits of your student number contain duplicates, you ignore the
duplicates. For example, if your student number is XXX522, you have to mark
with “x” the entries [t5, b1], and [t2, b1].

QUESTION: Please answer the following questions:

a. Which test cases are selected when using the additional greedy algorithm
to reach 100% branch coverage?

b. Which test cases are selected when using the greedy algorithm to reach
100% branch coverage?



Report the test case(s) in the exact order they are selected by the additional
greedy algorithm (point a) and the greedy algorithm (point b).

Table 1
b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17 b18 b19 b20

t1 x x x x x x

t2 x x x x x x

t3 x x x x x x

t4 x x x x x x x

t5 x x x x x

t6 x x x x

t7 x x x x

t8 x x x x x x x x

t9 x x x x x

t10 x x x x x x

t11 x x x x x

t12 x x x x x x

t13 x x x x

t14 x x x x x x

t15 x x x x x

Answer 4-a.
t8, t3, t6, t7, t4, t10

Answer 4-b.
T8, t4, t1, t2, t3, t10, t12, t14, t5, t9, t11, t15

5. Consider the program in Listing 1 and its mutant in Listing 2. Note that the
mutation has been applied to line 46.



IMPORTANT: To complete the program, fill in the constant A, B, and C (lines 3-5)
following the instructions below:

From the list {2, 3, 4, 5, 6, 7, 8, 9} select the three digits from left to right that are
not in the last three digits of your student number. For example, if your student
number is XXX521, you have to select the constant A=3, B=4, C=6. This
additional complexity has been introduced to avoid fraud and student cooperation
during the exam.

Question: Write a test case that can kill the mutant. Remember that a
meaningful test case must include assertions. Syntax errors (e.g., missing
semicolons, spelling mistakes, etc.) will be ignored.

In your answer, also specify the values of three constants A, B, and C that you
have used.

Listing 1
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

public class CoinChanger {
int A = // To be filled-in
int B = // To be filled-in
int C = // To be filled-in

private Integer[] coins = {1, A, B, C};

/**
* This method computes the minimum number of coins that add up to
* a given amount of money.
* The change-making problem is solved via recursion
* @param amount the amount to reach with the existing coins
*/
private int change(int amount) {

int count = 0;

// sort the coins in ascending order
Arrays.sort(coins);

// Traverse through all denomination
for (int i = coins.length - 1; i >= 0; i--) {

// Find denominations
while (amount >= coins[i]) {

amount -= coins[i];
count++;

}
}
return count;

}



31.
32.
33.
34.
35.
36.
37.
38.
39
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.

/**
* This method computes the number of coins to return to reach a
* certain amount. If the number of coins to give is above
* {@code maxCoins}, this method will give -1 as results
* to indicate that it is better use banknotes rather than coins
* @param amount amount to change with coins
* @param maxCoins max number of coins to use for change
*/
public int compute(int amount, int maxCoins) {

if (maxCoins < 2 || amount <= 0) {
// giving one coin is always acceptable
throw new IllegalArgumentException();

}

int change = this.change(amount);
if (change > maxCoins){ // too many coins, let's use banknotes

return -1;
} else {

return change;
}

}
}

Listing 2
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

public class CoinChanger {
int A = // To be filled-in
int B = // To be filled-in
int C = // To be filled-in

private Integer[] coins = {1, A, B, C};

/**
* This method computes the minimum number of coins that add up to
* a given amount of money.
* The change-making problem is solved via recursion
* @param amount the amount to reach with the existing coins
*/
private int change(int amount) {

int count = 0;

// sort the coins in ascending order
Arrays.sort(coins);

// Traverse through all denomination
for (int i = coins.length - 1; i >= 0; i--) {

// Find denominations
while (amount >= coins[i]) {

amount -= coins[i];
count++;

}
}



28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.

return count;
}

/**
* This method computes the number of coins to return to reach a
* certain amount. If the number of coins to give is above
* {@code maxCoins}, this method will give -1 as results
* to indicate that it is better use banknotes rather than coins
* @param amount amount to change with coins
* @param maxCoins max number of coins to use for change
*/
public int compute(int amount, int maxCoins) {

if (maxCoins < 2 || amount <= 0) {
// giving one coin is always acceptable
throw new IllegalArgumentException();

}

int change = this.change(amount);
if (change >= maxCoins){ // <--- MUTATED LINE

return -1;
} else {

return change;
}

}
}

Answer 5.

// A=2
// B=4
// C=5
@Test
public void test() {

CoinChanger cc = new CoinChanger();
assertEquals(3, cc.compute( 12,3));
// the change will be equal to maxCoins,
// this will kill the mutant

}

6. Consider the program in Listing 3. Answer the following questions:
a. How many edges are in the Control Flow Graph of the

countPrimes(...) method?
b. How many nodes are in the Control Flow Graph of the

countPrimes(...) method?
c. What is the Cyclomatic Complexity (CC) of the countPrimes(...)

method?



Listing 3
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

public class PrimeNumber {

/**
* This method computes the number of prime numbers smaller than
* or equal to a given positive number
* @param number upper bound
* @return number of prime numbers <= {@code number}
*/
public static int countPrimes(int number)  {

int results = 0;

if (number > 1) {
if (number < 4)

results = number - 1;
else {

BitSet set = new BitSet();
int s = (int) Math.sqrt(number);
int counter = number;
for (int p = 2; p <= s; p++) {

if (!set.get(p)) {
for (int q = 2; (p * q) <= number; q++) {

if (!set.get(p * q)) {
counter--;
set.set(p * q);

}
}

}
}
results = counter - 1;

}
}
return results;

}
}

Answer 6-a.
Number of edges = 19

Answer 6-b.
Number of nodes = 14

Answer 6-b.
CC = 19 - 14 + 2 =7




