Exam CSE2115
Software Engineering Methods

Delft University Of Technology
April 4, 2022 - 9:00-12:00

Please, read these instructions carefully. The exam consists of 6 open questions
that cover the material of the course. The questions are weighted and the
weights (points) can be found in the header of each question. The total number
of points that can be achieved on the exam is 60 points.

The exam has in total 8 pages.

1. DDD - Domain Driven Design (10 pts)

Consider the following scenario:

“TU Delft needs a new system for the library. For that reason, the development of an
online booking system for the library is envisioned to help students and teachers
access the catalog of books and multimedia education material available in the library.

Teachers and Students (hereafter referred to as users) can access the library catalog
using their NetID. Once logged in, users can browse the catalog, search for the library
items (e.g., books) via keyword search or by browsing the catalog. Once the user finds
the item to reserve, they can reserve the chosen item. The users have to choose the
pick-up time and location for physical items (books, CDs, and DVDs). In case there is
no copy available for the chosen physical items, the reservation is set in the 'waiting'
state, and the library will notify the user (via email) when the item is available to collect.

Audiobooks and ebooks are available online and are immediately available to the users
(i.e., no need to check for availability and collect time).

Users can cancel a reservation at any time from their account. Users can also browse
their reservation history and current reservation status. A reservation has an ID, the

user's name who made the reservation, and the item's ID. A physical item cannot be
booked for more than one month.

The system should also manage a reputation scoring system for the users. A user that
reports an item late or damaged receives one negative point (negative reputation). If the
item is returned in time and in a good state, the user receives a positive point (positive
reputation). Users with a very negative reputation (-5 points) are no longer allowed to
make a reservation. Finally, the system has an administrator that can add more library
items and reset (to zero) the users' reputation scores.”

QUESTION 1: What are the bounded contexts for the scenario above? Explain the
bounded contexts you identified using Domain-Driven Design (DDD), their
responsibilities, and how they are related.

For each context, please specify whether it is a core, generic, or supporting context.
Please motivate your design choices over alternative ones.

REMARK: There is no page/word limit for your answer. However, we highly recommend
writing concise answers that contain the following elements:
a. The name and the responsibility of each bounded context (1-2 sentences per
context) and their classification (core, generic, etc.).
b. Interaction among the identified bounded contexts (1 sentence per pair of
bounded contexts).
c. Motivation (1-2 sentences).
d. Alternative (1-2 sentences per alternative).

2. Requirement Engineering (10 pts)

Consider the following scenario:

“TU Delft wants to improve the education experience for both teachers and students.
Therefore, the university hired our development team to develop a novel system for
online education, and that allows students to attend lectures online, submit live
questions, participate in online polls, etc. The system should also facilitate teachers in
preparing and setting up interactive education tools (e.g., for live polls).

The development team has identified the following requirements:

1. The system should allow the responsible teachers to create live polls for a given
lecture.

2. The system should allow students enrolled in a course to participate in active live
polls.

3. The students should allow students that are enrolled in a course to submit
questions related to the lecture content.

4. The system should allow users to authenticate themselves via the TU Delft

Single-Sign-On.

The system should include profanity checks for the free-text questions and polls.

The system should be developed in Java.

Students should not be able to add/delete/change polls.

Students should be able to post online questions.

9. The system should be GDPR-compliant.

10. The system should allow lecturers to record the lectures.

11. The system should store the lecture videos using the MPEG compression
standard.

12. The system should allow the responsible teacher to indicate which live question
will be answered next during the lecture.

13. The system should have a fast response time.

14. The system should be able to handle at least 1000 users per online lecture.

15. The data should be stored using SQLite version 3.8.

16. The system should allow students to replay the recorded lectures.

17. The system should not allow posting questions for already recorded lectures.

18. The system should allow teachers to add/delete/change polls.

19. The system should have a low energy consumption.

20. The system should allow administrators to add new users.”

© NSO

(4 pts) QUESTION 2.1: Examine the requirements listed above. Classify the
requirements into functional (FR) and non-functional (NFR) requirements. Also, highlight
any ambiguity (i.e., not clearly formulated) in the requirements and indicate what is
missing to complete the requirement’s specification. If any requirements conflict with
one another, please document that too.

Notice that to answer this question, you can simply refer to the requirements number
(hence, there is no need to rewrite the requirements).

(3 pts) QUESTION 2.2: What are the stakeholders for the online education tool
discussed? Please indicate at least three stakeholders. For each stakeholder, justify
your choice and how they would contribute to the requirement analysis process.

(3 pts) QUESTION 2.3: Provide four additional functional and two additional
non-functional requirements that, according to your opinion (as a potential stakeholder),
should be added to the grade management system.

3. Design Patterns (10 pts)

Consider the following scenario:

“We want to implement a graphical editor that allows users to build complex diagrams
out of simple graphical elements (such as lines, squares, text boxes, etc.). The user can
group these elements to form large elements, which in turn can be grouped to form still
larger elements (e.q., in UML diagrams).

The system should allow drawing all elements of one single diagram at once, as well as
changing the characteristics of all its internal elements altogether (e.g., changing the
color of the lines, boxes, and text in the diagram). In other words, changes to the
diagram should be recursively applied to all its internal graphical elements.”

QUESTION: Which design pattern fits best in the implementation of this system? Please
explain your choice.

For the given design pattern of your choice, draw the corresponding class diagram
containing the following elements:
e The classes (the role, class name, attributes, and method names) you would
write to implement the design pattern
e The type of association for each pair of classes/interfaces.

4. Software Analytics (10 pts)

Consider the program in Listing 1. Answer the following question:

QUESTION: What is the value of the LCOM (Lack of Cohesion of Methods) metric for
the StringMatchFiniteAutomata class? Show all the steps you used to compute

the LCOM (how you applied the formula).

Given the results of the LCOM, does the class contain a code smell? If yes, which one?
How would you address the code smell?

Listing 1

O Joy 0w

OO0 DD BB DSDSDSSEDDDWWWWWWWWWWNNDNDNDNNDNNNDNNNDNNNNNNNRERRRRRRREREREREO
U WP, O WO JOOUDd WNRPEP O WO JOUd WNE OWOWLWJIOU D WNEFE OWOW-Jo U b wNhE O

public class StringMatchFiniteAutomata {

public static final int CHARS = 256;
public static int[][] FA;
public static Scanner scanner = null;

public static void main (String[] args) {
scanner = new Scanner (System.in);
System.out.println ("Enter String");
String text = scanner.nextLine();
System.out.println ("Enter pattern");
String pat = scanner.nextlLine();
searchPat (text, pat);
scanner.close () ;

}

public static void searchPat (String text, String pat) {
int m = pat.length();
int n = text.length();

FA = new int[m + 1] [CHARS];
computeFA (pat, m, FA);

int state = 0;
for (int 1 = 0; 1 < n; 1i++) {
state = FA[state] [text.charAt (i)];
if (state == m) {
System.out.println ("Pattern found at idx " + (1 - m + 1));
}

}

// Computes finite automata for the pattern
public static void computeFA (String pat, int m, int[][] FA) {
for (int state = 0; state <= m; ++state) {
for (int x = 0; x < CHARS; ++x) {
FA[state] [x] = getNextState(pat, m, state, x);

}

public static int getNextState(String pat, int m, int state, int x)
// 1f current state is less than length of pattern and input
// character of pattern matches the character in the alphabet
// then automata goes to next state
if (state < m && x == pat.charAt (state)) {
return state + 1;

}

for (int ns = state; ns > 0; ns—--) {
if (pat.charAt(ns - 1) == x) {
for (int 1 = 0; 1 < ns - 1; 1i++) {
if (pat.charAt (i) != pat.charAt(state - ns + i + 1))
break;

{

{

57. if (i == ns - 1) {
58. return ns;

59. }

60. }

6l. }

62. }

63. return 0O;

04. }

65. }

5. Regression Testing (10 pts)

Consider the coverage matrix (rows are test cases and columns are branches) depicted
in Table 1.

Table 1
bl |b2 (b3 | b4 |b5|b6 |b7|b8|b9 |bl0blllb12b13|b14|b15/b16/b17|b18|b19|b20
t1 X | X X | X X X
t2 X X X X | X X
t3 | x X | X X X X
t4 X X | X |X X X
t5 X | X X X | X
t6 X | X X X X
t7 | x X X | X | X X
t8 X | X X | X | X X
19 | x X | X | X X | X
t10 X | X | x|[x X | X
t11 X | X X | X X
t12 X | x| x X X | X
t13 X | X | x| X
t14 X | X X | X X [X
t15(x X | X[x| X

QUESTION: Which test cases are selected when using the additional greedy algorithm
to reach 100% branch coverage?

Report the test case(s) in the exact order they are selected by the additional greedy
algorithm. Also indicate the branches that are additionally covered by the test case
selected in each iteration of the algorithm.

6. Mutation Testing (10 pts)

Consider the program in Listing 2. Let us consider the mutant where line 14 (second
statement in the method hex2decimal method) is changed as follows:

e Original version: s = s.toUpperCase () ;

e Mutated version: s = s ; (it corresponds to deleting line 14)

Question: Write a test case that can kill the mutant. Remember that a meaningful test

case must include assertions. Syntax errors (e.g., missing semicolons, spelling
mistakes, etc.) will be ignored.

Listing 2 (Original Program)

1. Vi

2. * Converts any Hexadecimal Number to Octal
3. */

4.

5. public class HexToOct {

6.

7. J*H

8. * This method converts a Hexadecimal number to a decimal number
9. * @param s The Hexadecimal Number

10. * @return The Decimal number

11. */

12. private static int hex2decimal (String s) {
13. String str = "0123456789ABCDEF";

14. s = s.toUpperCase(); <-- MUTANT LOCATION
15. int val = 0;

16. for (int i = 0; 1 < s.length(); i++) {
17. char a = s.charAt (i):;

18. int n = str.indexOf (a);

19. val = 16 * val + n;

20. }

21. return val;

22. }

23.

24 Vil

25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

39

40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.

* This method converts a Decimal number to a octal number
* @param q The Decimal Number
* @return The Octal number

*/
private static int decimalZoctal (int qg) {

int now;

int 1 = 1;

int octnum = 0;

while (g > 0) {
now = g % 8;
octnum = (now * (int) (Math.pow(10, 1i))) + octnum;
q /= 8;
i++;

}
octnum /= 10;
return octnum;

}
/**

* Main method that gets the hexadecimal input from user and converts
* it into octal.
*/

public int convert (String hexadecimal) {

// convert hex to decimal
int decnum = hexZ2decimal (hexadecimal) ;

// convert decimal to octal
return decimallZoctal (decnum) ;

THIS IS THE END OF THE EXAM.

