Exam EE1510AM part I

Electricity and Magnetism

Wednesday, March 15, 2023, 9:00-11:00 a.m.

This exam consists of 2 pages with 2 assignments.

The total number of credits is 90.

The number of credits rated for each assignment is listed to the left of each assignment.

Start every assignment on a new sheet and write on every sheet of each worked out assignment your name and student number.

45 punten

Opgave 1

Consider a very thin disc in the xy-plane with its center positioned at <0,0,0>and radius r = R. The disc contains a constant surface charge density $\sigma = \sigma_0$.

 $\boldsymbol{\mathcal{L}}$ a.) Determine the total charge Q on the disc.

The electric field **E** that is excited by the surface charge density σ on the disc is determined at the position P in < 0, 0, z >.

b.) Show that the electric field $\mathbf{E}(0,0,z)$ is:

$$\mathbf{E}(0,0,z) = \frac{\sigma_0}{2\epsilon_0} \left(1 - \frac{z}{\sqrt{R^2 + z^2}} \right) \mathbf{i}_z$$

- c.) Derive from the expression in b.) the electric field E(0,0,z) when the disc 8 is extended to an infinite plane with surface charge density σ .
 - \checkmark d.) Show that the potential V(0,0,z) due to the surface charge density σ on the disc is:

$$V(0,0,z) = \frac{\sigma_0}{2\epsilon_0} (\sqrt{R^2 + z^2} - z),$$

and show that $V(0,0,z) \to 0$ when $z \to \infty$.

Suppose the disc with radius r = R is enclosed by a perfectly conducting, thin spherical shell with radius r = 2R and center at < 0, 0, 0 >.

 $\sqrt{4}$ e.) Determine in this case the electric field **E** when r > 2R.

45 punten

Opgave 2

Consider two concentric spheres with their centers located at < 0, 0, 0 >, where the inner sphere is a solid perfectly conducting sphere with radius r = R, the outer sphere is a very thin perfectly conducting shell with radius r = 2R. The space between the inner sphere with radius r = R and the outer sphere with radius r = 2R contains a volume charge density $\rho = k_0 R^2/r^2$. On the outside of the outer sphere with radius r = 2R we have no charge.

V a.) Determine the electric field **E** for all r, with $0 < r < \infty$.

We assume that the potential V(r) = 0, when $r \to \infty$.

- **b.)** Determine the potential V(r) for all r, with $0 < r < \infty$.
- c.) Give an expression for the capacitance C formed by the perfectly conducting spheres with radius r = R and r = 2R.

In addition to the two concentric spheres described in the configuration above, we now add a very long cylinder with radius s = R that contains a volume charge density $\rho(s) = k_0 s/R$. The axis of the cylinder points in the z-direction and is positioned at < 4R, 0, z >.

- $\sqrt{\mathbf{d.}}$ Determine the electric field $\mathbf{E}_{\text{cylinder}}(x,0,z)$ that is generated by the volume charge density ρ inside the cylinder, when 0 < x < 3R and when 3R < x < 4R.
- \vee e.) Find an expression for the total electric field $\mathbf{E}_{\text{total}} = \mathbf{E}_{\text{cylinder}} + \mathbf{E}_{\text{spheres}}$ in the point < 3R/2, 0, 0 >.

End of Exam