Midterm EE1M31

Tuesday May 17, 2022, 9:00 - 11:00Responsible lecturer: Christophe Smet

Technische Universiteit Delft, Delft Institute of Applied Mathematics

You can use a non-graphing, non-programmable calculator.

You only have to hand in the answer sheet. Circle the correct option for the multiple choice questions.

27 marks can be earned, if you score M of them your grade will be $1 + \frac{M}{3}$.

1)	The following probabilities about two events A and B are known: $P(B^c A) = 0.3$,			
2p	P(A) = 0.5, P(B) = 0.7.			
	(a) Determine $P(A^c \cap B^c)$.			
	(b) And A and D independent?			
2)	(b) Are A and B independent? In a police control on drunk driving, a person has a probability q of having drunk too			
	much. The police use a breath analyzer, which is not perfect: people who have drum			
2p	too much have a probability p of testing positive. And people who haven't drun			
	much have a probability p of testing negative. What is the probability that someone			
	who tests positive, has drunk too much? Express your answer using p and q .			
3)	The random variables X_1 , X_2 and X_3 each have a distribution belonging to one of the fa-			
3p	milies we have seen. Give the three distributions including the value of the parameter(s),			
J	i.e. your answer could be something like $X_1 \sim \text{Bin}(10, 0.2)$.			
	(a) I toss one fair coin four times. Let X_1 be 1 if the number of Heads is equal to the			
	number of Tails, else X_1 is 0.			
	(b) $X_2 = YZ$ where $Y \sim \text{Ber}(0.3)$ and $Z \sim \text{Ber}(0.4)$ are independent random variables.			
	(c) $X_3 = 4W - 5$ where $W \sim N(2, 6)$.			
4)	Let X be the result of a fair four-sided die (with the numbers 1, 2, 3 and 4 on the faces).			
2p	Compute the variance of X .			
5)	Consider the random variable X with density function $f(x) = 2x$ if $0 \le x \le 1$ (else			
2p	f(x) = 0.			
	(a) Compute the 80%-percentile $q_{0.8}$.			
	(b) Consider $Y = X^3$ and give $F_Y(y)$ for $0 \le y \le 1$.			
6)	For each of the following functions, decide whether or not they are a probability density			
	function. All functions are zero outside of the specified interval.			
3р	(a) $f(x) = 2x - 3/2$ if $0 \le x \le 2$			
	(b) $g(x) = \sqrt{1 - x^2}$ if $-1 \le x \le 1$ (this is a semicircle)			
	(c) $h(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x+3)^2}$ for all x			
7)	I throw one fair, standard, six-sided die three times. Let X be the number of times			
1p	I throw a "four", and Y be the number of times I throw a "six". Decide whether			
'	Cov(X,Y) is positive, zero, or negative. Hint: you do not need to compute the actual			
	value for this question.			

- 8) Consider two independent random variables X and Y, both with a Bin(2,1/2) distribution. Consider U = |X Y| and $V = X^2$. The joint probability mass function is given in the table.
 - (a) What are the values for a, b, c?
 - (b) What is $F_{U,V}(1,1)$?
 - (c) Are U and V independent?

	U = 0	U=1	U=2
V = 0	1/16	1/8	1/16
V=1	1/4	1/4	a
V=4	1/16	b	c

- Consider the random variables X and Y with joint density function $f_{X,Y}(x,y) = 2x^2 + y^2$ if $0 \le x \le 1$ and $0 \le y \le 1$ (the function is zero outside of this square).
 - (a) Compute the marginal density function for X.
 - (b) Compute E[1-Y].
 - (c) Express P(X < Y) using integrals.
 - (d) Compute this probability P(X < Y).
- Consider 300 independent random variables X_1 to X_{300} , all having a U(0,1) distribution. What is the probability that S < 140, where S is the sum of these 300 random variables?
- Chebyshev's inequality tells us that for each random variable Y with variance σ^2 , we have that $P(|Y E[Y]| \ge a) \le \frac{\sigma^2}{a^2}$. Now consider $X \sim \text{Exp}(2)$.
 - (a) From Chebyshev's inequality we can obtain $P(X \ge 3/2) \le b$. Find b.
 - (b) Find the exact probability $P(X \ge 3/2)$.
- 12) The molecules in nitrogen gas do not all have the same velocity: their velocity is a random variable V. The kinetic energy K is then also variable, since it depends on V as $K = mV^2/2$. Here m is the constant mass of each molecule. If $E[V] = \mu$, what can you then say about E[K]?

Name:

Student number:

1. (a) $P(A^c \cap B^c) =$ _____

(b) • Yes

• No

2. Probability: _____

3. (a) $X_1 \sim$ _____

(b) $X_2 \sim$ _____

(c) $X_3 \sim$ _____

 $4. \ Var(X) = \bullet \frac{1}{4} \quad \bullet \frac{2}{4} \quad \bullet \frac{3}{4} \quad \bullet \frac{4}{4} \quad \bullet \frac{5}{4} \quad \bullet \frac{6}{4} \quad \bullet \frac{7}{4} \quad \bullet \frac{8}{4}$

5. (a) $q_{0.8} =$

(b) $F_Y(y) =$ _____

6. f(x): • Yes • No g(x): • Yes • No h(x): • Yes • No

7. $\bullet Cov(X,Y) > 0$ $\bullet Cov(X,Y) = 0$ $\bullet Cov(X,Y) < 0$

8. (a) $a = \underline{\hspace{1cm}} b = \underline{\hspace{1cm}} c = \underline{\hspace{1cm}}$

(b) $F_{U,V}(1,1) = \underline{\hspace{1cm}}$

(c) • Yes • No

9. (a) Marginal density function:

(b) E[1-Y] =

(c) P(X < Y) =

(d) $P(X < Y) = \bullet \frac{4}{12} \bullet \frac{5}{12} \bullet \frac{6}{12} \bullet \frac{7}{12} \bullet \frac{8}{12} \bullet \frac{9}{12}$

10. $P(S < 140) \approx -0.0228$ •0.0668 •0.0793 •0.1587 •0.2005 •0.3520

11. (a) b =

(b) $P(X \ge 3/2) =$

12. $\bullet E[K] > \frac{m}{2}\mu^2$ $\bullet E[K] = \frac{m}{2}\mu^2$ $\bullet E[K] < \frac{m}{2}\mu^2$

ullet Impossible to tell without more information on the distribution of V

Solutions

- 1. $P(B^c \cap A) = P(B^c | A)P(A) = 0.15$. Furthermore $P(A) = P(B^c \cap A) + P(B \cap A)$ from which $P(B \cap A) = 0.5 0.15 = 0.35$. Then $P(A \cup B) = P(A) + P(B) P(A \cap B) = 0.5 + 0.7 0.35 = 0.85$. And then by de Morgan's rules, $P(A^c \cap B^c) = 1 P(A \cup B) = 0.15$. Since P(B|A) = P(B), A and B are independent.
- 2. Let T be the event of testing positive and D be the event of having drunk too much. Then P(D) = q and $P(T|D) = P(T^c|D^c) = p$ are given. Bayes' rule then gives $P(D|T) = \frac{pq}{pq+(1-p)(1-q)}$.
- 3. (a) The only outcomes are 0 and 1, so it is Bernoulli. The success probability is the probability to get two Tails with four fair coins, i.e. 3/8 (from the binomial formula). $X_1 \sim Ber(0.375)$.
 - (b) The only outcomes are 0 and 1, so it is Bernoulli. The success probability is P(Y = 1)P(Z = 1) = 0.12 by independence. $X_2 \sim Ber(0.12)$.
 - (c) A linear transformation of a normal is again normal. The expectation is $4 \cdot 2 5 = 3$ and the variance is $4^2 \cdot 6 = 96$. $X_3 \sim N(3, 96)$.
- 4. E[X] = 2.5 and $E[X^2] = 7.5$ so Var(X) = 7.5 6.25 = 1.25.
- 5. (a) Solve $\int_0^q 2x dx = 0.8$ to find $q = \sqrt{0.8}$.
 - (b) $F_Y(y) = P(Y \le y) = P(X^3 \le y) = P(X \le y^{1/3}) = F_X(y^{1/3}) = (y^{1/3})^2 = y^{2/3}$ where we used $F_X(x) = x^2$.
- 6. f is not, since f takes negative values. g is not since the area below the curve is $\pi/2$. h can be recognized as the pdf for a N(-3,1) variable.
- 7. The more times you throw a four, the fewer times you expect to throw a six, so the Covariance is negative.
- 8. U=2, V=1 implies X=1 and Y=-1 or Y=3, which is impossible, so a=0. U=1, V=4 implies X=2 and Y=1, so b=1/8. And V=4, U=2 implies X=2, Y=0 so c=1/16. You can check that the marginal distributions are then as you expect, and that all probabilities add up to one. $F_{U,V}(1,1)=P(U\leq 1,V\leq 1)=1/16+1/8+1/4+1/4=11/16$. Finally, U=1 and V=1 are dependent, e.g. U=10 and U=11.
- 9. (a) $F_X(x) = \int_0^1 (2x^2 + y^2) dy = 2x^2 + 1/3$.
 - (b) $E[1-Y] = 1 E[Y] = 1 \int_0^1 \int_0^1 (2x^2 + y^2)y dx dy = 5/12.$
 - (c) This is $\int_0^1 \int_x^1 (2x^2 + y^2) dy dx$ or $\int_0^1 \int_0^y (2x^2 + y^2) dx dy$.
 - (d) Computation gives 5/12.
- 10. From the formula sheet, $E[X_i] = 1/2$ and $Var(X_i) = 1/12$. So from the CLT, $S \sim N(150, 25)$. This gives P(S < 140) = P((S 150)/5 < -2) = 0.0228.
- 11. (a) E[X] = 1/2, so $X \ge 3/2$ is equivalent to $|X E[X]| \ge 1$. Note that this also includes $X \le -1/2$, which has probability zero for the exponential. Applying Chebyshev's inequality, we find $P(X \ge 3/2) \le Var(X)/1 = 1/4$.
 - (b) $P(X \ge 3/2) = 1 F_X(3/2) = e^{-2 \cdot 3/2} = e^{-3}$, in line with Chebyshev's bound in (a).
- 12. Jensen's inequality, applied to the convex $g(x) = mx^2/2$, gives that $E[K] = E[mV^2/2] = E[g(V)] > g(E[V]) = g(\mu) = m\mu^2/2$.