

Delft University of Technology Faculty EEMCS Mekelweg 4 2628 CD Delft

Exam part 2 Real Analysis (AM2090), 13.30-15.30, 27-01-2023, Teacher E. Lorist, co-teacher M.C. Veraar.

- 1. Let S be a set.
- (3) a. Complete the following definition: A collection $\mathcal{R} \subseteq \mathcal{P}(S)$ is called a *ring* if ...
- (3) b. Complete the following definition: A map $\mu \colon \mathcal{R} \to [0, \infty]$ is called *additive* if ... Let $\mathcal{R} \subseteq \mathcal{P}(S)$ be a ring and let $\mu \colon \mathcal{R} \to [0, \infty]$ be additive.
- (3) c. Using only the definitions, show for $A, B \in \mathcal{R}$ that

$$\mu(A \cup B) \le \mu(A) + \mu(B).$$

- 2. Let (S, A) and (T, B) be a measurable spaces and let $f: S \to T$ be a function.
- (5) a. Show that $\widetilde{\mathcal{B}}:=\{B\in\mathcal{B}:f^{-1}(B)\in\mathcal{A}\}$ is a σ -algebra.

Suppose that there is a collection of sets $\mathcal{F} \subseteq \mathcal{B}$ such that

- (i) $f^{-1}(F) \in \mathcal{A}$ for all $F \in \mathcal{F}$.
- (ii) $\sigma(\mathcal{F}) = \mathcal{B}$.
- (5) b. Show that f is measurable.
 - 3. Let $S = \mathbb{R}$, $A = \mathcal{P}(\mathbb{R})$ and fix an $a \in \mathbb{R}$. Define $\delta_a : A \to [0, \infty]$ by

$$\delta_a(A) = \begin{cases} 1 & \text{if } a \in A, \\ 0 & \text{if } a \notin A. \end{cases}$$

Then (S, A, δ_a) is a measure space.

- (4) a. For a simple function $f: S \to [0, \infty)$, show that $\int_S f d\delta_a = f(a)$.
- (4) b. For a function $f: S \to [0, \infty]$, show that f is measurable and $\int_S f \, d\delta_a = f(a)$.
- (3) c. For a function $f: S \to \mathbb{R}$, show that f is integrable and $\int_S f \, d\delta_a = f(a)$.
- (12) 4. State and prove the dominated convergence theorem.
 - 5. Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = \frac{1}{x} \cdot \mathbf{1}_{(0,\infty)}(x)$.
- (5) a. Show that f is measurable.

Hint: Use a suitable characterization of measurability.

Define $\mu \colon \mathcal{B}(\mathbb{R}) \to [0, \infty]$ by $\mu(A) = \int_A f \, d\lambda$, where λ denotes the Lebesgue measure on \mathbb{R} .

- (6) b. Show that μ is a measure.
- (5) c. Let $0 < a < b < \infty$. Prove that $\mu([a, b]) = \mu([\frac{1}{b}, \frac{1}{a}])$. Hint: $\ln(x) = -\ln(\frac{1}{x})$ for $x \in (0, \infty)$.

See also the next page.