Midterm AM2080 2023-2024

13:30 - 15:30 October 5, 2023

This exam has been designed and peer reviewed by the AM2080 Team

This written midterm exam contains 5 questions, each question counts for 20% of the final grade of the written test. Within each question, all items are rated equally. You are only allowed to use a personally made cheat-sheet, the sheet with information on probability distributions, and the tables for normal, binomial, chi-square and Student-t distributions. You are not allowed to use any books or notes.

1. Let X be a random variable with distribution function

$$F(x) = \begin{cases} 0 & \text{if } x < 0, \\ \sqrt{x} & \text{if } 0 \le x \le \frac{1}{4}, \\ \frac{1}{2} & \text{if } \frac{1}{4} \le x \le \frac{1}{2}, \\ x & \text{if } \frac{1}{2} < x < 1, \\ 1 & \text{if } x \ge 1. \end{cases}$$

- (a) Sketch the graph of F and determine the α -quantile of F for $\alpha = 0.25$.
- (b) Determine the median of F.
- (c) Derive the expression for the quantile function F^{-1} .
- 2. Let X_1, \ldots, X_n be independent with a Bernoulli distribution with parameter $p \in [0, 1]$. Consider the following estimator for the parameter p:

$$T = \sum_{i=1}^{n} c_i X_i$$

where $c_1, \ldots, c_n \in \mathbb{R}$ are constants.

- (a) Under what condition on c_1, \ldots, c_n is T an unbiased estimator for p?
- (b) Consider the case n=2, with c_1 and c_2 , such that T is unbiased. Determine for which $c_1, c_2 \in \mathbb{R}$, the mean squared error is minimal.

3. Let X_1, \ldots, X_n be independent random variables with density

$$p_{\theta}(x) = \frac{\theta - 1}{x^{\theta}}, \quad x > 1,$$

where $\theta > 2$ is unknown.

- (a) Determine the method of moments estimator for θ .
- (b) Determine the maximum likelihood estimator for θ .
- 4. Let X_1, \ldots, X_n be independent random variables with distribution function

$$F_{\theta}(x) = \begin{cases} 1 - (\theta/x)^2 & x \ge \theta; \\ 0 & x < \theta, \end{cases}$$

for some unknown parameter $\theta > 0$. We want to test $H_0: \theta \leq 1$ against $H_1: \theta > 1$ with test statistic $T = X_{(1)} = \min\{X_1, \ldots, X_n\}$ at significance level α_0 . We reject $H_0: \theta \leq 1$ for large values of $X_{(1)}$.

(a) Show that

$$P_{\theta}(X_{(1)} \ge t) = \begin{cases} (\theta/t)^{2n} & t \ge \theta; \\ 1 & t < \theta, \end{cases}$$

and determine the p-value for an observation t = 1.1, when n = 20.

- (b) The critical region is $K = \{x : x_{(1)} \ge c_{\alpha_0}\}$. Show that $c_{\alpha_0} = \alpha_0^{-1/(2n)}$.
- (c) Consider the test with critical region given by parts (a)-(b) for $\alpha_0 = 0.05$. Determine how large n must be so that the power at $\theta = 1.05$ is at least 0.80.
- 5. Let X_1, \ldots, X_n be independent identically distributed with a N(0, 1) distribution and let

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and $S_X^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$.

Let O be an orthonormal $n \times n$ -matrix, with first row $f_1 = \left(\frac{1}{\sqrt{n}}, \dots, \frac{1}{\sqrt{n}}\right)$ and define the column vector Y by Y = OX, where X is the column vector consisting of X_1, \dots, X_n .

(a) Show that

$$Y_1 = \sqrt{n} \overline{X}$$
 and $\sum_{i=2}^n Y_i^2 = \sum_{i=1}^n (X_i - \overline{X})^2$.

(b) Prove that \overline{X} and S_X^2 are independent and that $(n-1)S_X^2$ has a χ_{n-1}^2 distribution.

You may use that for any orthonormal matrix O, the random vector Y = OX has components Y_1, \ldots, Y_n that are independent identically distributed with a N(0,1) distribution.