

Delft University of Technology Faculty EEMCS Mekelweg 4 2628 CD Delft

Exam part 1 Real Analysis (AM2090), 13.30-15.30, 2-11-2023, Teacher E. Lorist, co-teacher M.C. Veraar.

1. Let (M,d) be a metric space. Recall that for a set $A\subseteq M$ we defined the diameter of A by

$$diam(A) := \sup\{d(x, y) : x, y \in A\}.$$

(5) a. Let $A, B \subseteq M$ with $A \cap B \neq \emptyset$. Show that

$$diam(A \cup B) \leq diam(A) + diam(B)$$
.

(5) b. Give an example of a metric space (M, d) and subsets $A, B \subseteq M$ such that

$$diam(A \cup B) > diam(A) + diam(B)$$
.

As always, explain your assertions.

- (5) c. Let $(x_n)_{n\geq 1}$ be a Cauchy sequence in (M,d) and define $A_n := \{x_k : k \geq n\}$ for $n \geq 1$. Show that $\lim_{n \to \infty} \operatorname{diam}(A_n) = 0$.
 - 2. Consider the normed space $(\ell^1, \|\cdot\|_1)$ and define

$$A := \{ x \in \ell^1 : |x_n| < 1 \text{ for all } n \ge 1 \} \subseteq \ell^1,$$

$$B := \{ x \in \ell^1 : |x_n| \le 1 \text{ for all } n > 1 \} \subset \ell^1.$$

- (3) a. Complete the following definition: The set $A \subseteq \ell^1$ is open if ...
- (9) b. Show that A is open.

Hint: For any $x \in \ell^1$ one has $\lim_{n \to \infty} x_n = 0$.

The set B is closed, which you may use without a proof.

- (8) c. Show that cl(A) = B.
 - 3. Let (M,d) and (N,ρ) be metric spaces.
- (3) a. Complete the following definition: The set $A \subseteq M$ is totally bounded if ...

Let $f: M \to N$ such that for $x, y \in M$ we have

$$\rho(f(x), f(y)) \le \sqrt{d(x, y)}.$$

- (8) b. Suppose $A \subseteq M$ is totally bounded, show that f(A) is totally bounded using only the definitions.
- (5) c. Show that f is uniformly continuous.
- (8) 4. Let (M,d) be a metric space. Let $F \subseteq M$ be closed and define $f: M \to \mathbb{R}$ by f(x) = d(x,F). We have seen in the lectures that f is a continuous function and f(x) = 0 if and only if $x \in F$. For a compact set $K \subseteq M$ with $K \cap F = \emptyset$, show that

$$d(K, F) := \inf\{d(x, y) : x \in K, y \in F\} > 0.$$

See also the next page.

- 5. Let (M,d) and (N,ρ) be metric spaces. Let $f_n: M \to N$ for $n \ge 1$ and $f: M \to N$ be functions.
- (3) a. Complete the following definition: $(f_n)_{n\geq 1}$ converges uniformly to f if ...

Now take $M = [0, \infty)$ and $N = \mathbb{R}$, both equipped with the standard metric d(x, y) = |x - y|. For $n \ge 1$ set

$$f_n(x) := \frac{\sin(n\pi x)}{1 + nx}.$$

- (3) b. Show that $(f_n)_{n\geq 1}$ converges pointwise on $[0,\infty)$.
- (5) c. Show that $(f_n)_{n\geq 1}$ does not converge uniformly on $[0,\infty)$.

The value of each part of a problem is printed in the margin; the final grade is calculated using

$$Grade = \frac{Total}{70} \cdot 9 + 1$$

and rounded in the standard way.

This exam has been composed by the teacher and reviewed by the co-teacher.