

Delft University of Technology Faculty EEMCS Mekelweg 4 2628 CD Delft

 $d(x,y) \leq d(x,z) + d(z,y)$ $\xi = d(x,y) - d(y,z) \leq d(x,\xi)$ $-\epsilon = d(z,y) - d(y,x) \le d(x,z)$ $1 \le t = max \{ t, -t \}$

Exam part 1 Real Analysis (AM2090), 13.30-15.30, 8-11-2022, Teacher E. Lorist, co-teacher M.C. Veraar. 1t1 = d(x, z)

- 1. Let (M, d) be a metric space.
- § For $x, y, z \in M$ prove that $|d(x, y) d(y, z)| \le d(x, z)$. (4)
- Suppose that $x_n \to x$ and $y_n \to y$ in M. Prove that $d(x_n, y_n) \to d(x, y)$. (5)
 - 2. Let (M,d) be a metric space and let $A,B\subseteq M$.
- \bigotimes Give the definition of $\operatorname{int}(A)$. (3)

Prove or give a counterexample to the following statements:

- 76. $\operatorname{int}(A) \cup \operatorname{int}(B) \subseteq \operatorname{int}(A \cup B)$. may je $\times \in \operatorname{int}(A) \subset \mathbb{R}$ $\times \in \mathbb{R}$ (6)
- $\inf(A \cup B) \subseteq \operatorname{int}(A) \cup \operatorname{int}(B).$ (6)
 - 3. Let (M,d) and (N,ρ) be metric spaces and let $f:M\to N$ be a function.
- (3)(a) Complete the following definition: f is uniformly continuous if ...
- (6)Suppose that f is uniformly continuous and let $(x_n)_{n\geq 1}$ be a Cauchy sequence in M. Show that $(f(x_n))_{n\geq 1}$ is a Cauchy sequence in N.
- (7)Suppose that f is bijective and both f and f^{-1} are uniformly continuous. If N is complete, show that M is complete.

In the next exercise, the following theorem from the book may be useful:

Theorem 8.9 Let (M,d) be a metric space. The following are equivalent:

- (i) M is compact.
- (ii) If \mathcal{G} is a collection of open sets in M with $M \subseteq \bigcup \{G : G \in \mathcal{G}\}$, then there are finitely many sets $G_1, \ldots, G_n \in \mathcal{G}$ such that $M \subseteq \bigcup_{k=1}^n G_k$.
- 4. Let (M,d) be a metric space. For each $n \geq 1$, let $f_n : M \to \mathbb{R}$ be a continuous function. Assume that $f_n(x) \to 0$ for all $x \in M$. Fix $\varepsilon > 0$ and define for $n \ge 1$

$$G_n := \{ x \in M : |f_n(x)| < \varepsilon \}.$$

- a: Prove that G_n is open for all $n \ge 1$. $\forall n$? $\mathcal{E} = r \ne \varepsilon \times \infty$ (4)
- Prove that $M \subseteq \bigcup_{n=1}^{\infty} G_n$. (4)

Now, in addition, suppose that M is compact and $|f_m(x)| \le |f_n(x)|$ for all $m \ge n$ and $x \in M$.

- Show that there is an $N \geq 1$ such that $M \subseteq G_N$. (6)
- (4) d. Prove that $f_n \to 0$ uniformly on M.

See also the next page.

- 5. Let (M, d) be a metric space.
- (3) & Complete the following definition: a set $A \subseteq M$ is totally bounded if ...
- (9) by Let ℓ^1 be the space of all sequences $(x_n)_{n\geq 1}$ such that $\|(x_n)_{n\geq 1}\|_1:=\sum_{n=1}^\infty |x_n|<\infty$. Show that

$$A := \{(x_n)_{n \ge 1} : \|(x_n)_{n \ge 1}\|_1 \le 1\} \subseteq \ell^1$$

is bounded, but not totally bounded.

The value of each part of a problem is printed in the margin; the final grade is calculated using

$$Grade = \frac{Total}{70} \cdot 9 + 1$$

and rounded in the standard way.

This exam has been composed by the teacher and reviewed by the co-teacher.