Multiple-choice questions

1. Given a problem $A \in NPC$. Then it holds that: (A.)A does not have a polynomial algorithm, unless P = NP. (2) JB. yes-instances and no-instances of A can be verified in polynomial time. \mathscr{L} when A is also in coNP, then NP=coNP. (D) for every coNP problem B it holds that $B \leq A^c$. 2. Consider three decision problems A, B, and C. It is known that $A \in \text{coNP}$, $B \in \text{NP}$, and $C \in \text{NP-hard}$ under \leq . Then it follows that: \bigwedge A If $C \leq B$ then $B \in NPC$. $A \leq B \text{ or } B \leq A.$ $(D.)B \leq C.$ 3. Which of the following claims is/are true, if any? (A.) all problems in $P-\{\emptyset, \Sigma^*\}$ are polynomially reducible to each other. B. all PSPACE problems are polynomially reducible to each other. $\mathcal{L}(\widehat{C})$ all NPC problems are polynomially reducible to each other. \mathscr{H} \mathscr{B} . all NP-hard problems are polynomially reducible to each other. 2 4. Consider the 3-FALSIFICATION problem, defined as follows: Given a set C of 3-SAT clauses over a set of atoms U, does there exist a truth assignment au such that au makes all clauses in C false. Professor C.L. Ever has designed an algorithm to solve this problem: function SOLVE $(U = \{u_1, \ldots, u_n\}, C = \{c_1, \ldots, c_m\})$ List $\leftarrow \emptyset$; $i \leftarrow 0$; falsifiable \leftarrow true while $i \neq m$ and falsifiable do $i \leftarrow i + 1$ Let $c_i = \{x_1, x_2, x_3\}$ for $j \leftarrow 1, 2, 3$ do if $negated(x_i) \in List then$ falsifiable ← false List \leftarrow List $\cup \{x_i\}$ end if end for end while return falsifiable end function

Here, the negated() call inverts the literal, i.e. a is turned into $\neg a$ and $\neg a$ is turned into a.

From this algorithm we may conclude that:

 $X \longrightarrow A$. 3-Falsification $\in P$.

B. The above algorithm only checks whether there are clauses in \boldsymbol{C} in which both a proposition symbol and its negation occur, but it says nothing about the ability to make all clauses false.

C. The algorithm is incorrect as 3-FALSIFICATION cannot be solved in polynomial time, unless P = NP.

3-FALSIFICATION is the complement of the NP-complete satisfiability problem 3-SAT. Therefore 3-FALSIFICATION is coNP-complete and the algorithm cannot be correct.

5. Dr. S. Timation claims:

It is known that there exists a 2-approximation algorithm for Vertex Cover (VC). Because VC \in NPC, it follows that every NP problem A is reducible to VC. Hence, for every NP-problem there is a 2-approximation algorithm.

Which of the following hold(s)?

A. This claim is false, because VC does not have a 2-approximation algorithm.

B. This claim is false, because VC ∉ NPC.

(C.) This claim is false, because polynomial time reductions do not preserve approximation ratio's.

D. This claim holds.

6. Consider the decision problems A, B, and C, where $A \leq B$, and B is a restriction of C. It follows that:

A. If A is strong NP-complete, then C is also strong NP-complete.

B. If C has a pseudo-polynomial algorithm, then B also has a pseudo-polynomial algorithm.

C. If C is NP-complete, then B is NP-complete.

(D.) If B is NP-complete, then C is NP-hard.

2 7. The Alarm problem consists of an undirected graph G=(V,E), a distance $d\in\mathcal{Z}^+$ and a budget $B \in \mathcal{Z}^+$. The question is whether there is a subset $V' \subseteq V$ with $|V'| \leq B$, such that every node in $v \in V$ is not more than d units away from a node in V'. I.e., the question is, can we find for every node $v \in V$, a node $v' \in V'$ such that there is a path from v to v' in G with a length of at most d.

Which of the following claims is/are true?

A. Instances of this problem with d=1 are solvable in polynomial time.

 \mathcal{H} (B.) instances of this problem with d=|V| are solvable in polynomial time.

 \times (C.) instances of this problem with d=1 are vertex cover instances.

 λ D. instances of this problem with $B \le 2$ are solvable in polynomial time.

8. Check which of the following statements is true:

(A) If $A \in P$ then $A^c \in P \cap NP$.

 $(B) P^{NP} = P^{coNP}$

4 9. M is a polynomial c-approximation algorithm for a minimisation problem A with c > 1. Suppose we know that for an instance x of A it holds that $a \leq opt(x) \leq b$ for some constants a and b. Then the result M(x) of applying M to x satisfies:

 $A. \ a \leq M(x) \leq c$

B. $M(x) \le b$ A $C \cdot a \le A(x) \le b \times c$ D. $c/a \le A(x) \le c/b$

10. Let L be a language and M a polynomial probabilistic Turing machine accepting L. Which of the following statements allow us to conclude that $L \in BPP$?

 \swarrow A. $P[M ext{ accepts } x \mid x \in L] \geq 0.45 ext{ and } P[M ext{ accepts } x \mid x \not\in L] \leq 0.55$

 $^{\ell}$ (B) $P[M ext{ accepts } x \mid x \in L] \geq 0.55 ext{ and } P[M ext{ accepts } x \mid x
otin L] \leq 0.45$

C. $P[M \text{ accepts } x \mid x \in L] \ge 0.95 \text{ and } P[M \text{ accepts } x \mid x \notin L] \le 0.95$

(D) $P[M \text{ accepts } x \mid x \in L] \ge 0.509 \text{ and } P[M \text{ accepts } x \mid x \notin L] \le 0.499$

 $pt = 50 \times \frac{40 - 1,5 \times 7}{40} = 260, 36, 875$