

Delft University of Technology Faculty EEMCS Mekelweg 4 2628 CD Delft

> Exam part 2 Real Analysis (AM2090), 13.30-15.30, 22-01-2024, Teacher E. Lorist, co-teacher M.C. Veraar.

1. Let S be a set.

(3) a. Complete the following definition: A collection $A \subseteq \mathcal{P}(S)$ is called a σ -algebra if ...

Let $\mathcal{A} := \{A \subseteq S : A \text{ is countable or } A^c \text{ is countable} \}$ be the countable-cocountable σ -algebra.

(7) b. Define $\mathcal{F} := \{ \{s\} : s \in S \}$. Show that $\sigma(\mathcal{F}) = \mathcal{A}$.

Recall the following definitions for a sequence $(A_n)_{n\geq 1}$ of subsets of a set S:

- (i) If $A_n \subseteq A_{n+1}$ for all $n \ge 1$, we write $A_n \uparrow A$ with $A = \bigcup_{n=1}^{\infty} A_n$.
- (ii) If $A_n \supseteq A_{n+1}$ for all $n \ge 1$, we write $A_n \downarrow A$ with $A = \bigcap_{n=1}^{\infty} A_n$.

Theorem 1. Let (S, \mathcal{A}, μ) be a measure space and let $(A_n)_{n\geq 1}$ be a sequence in \mathcal{A} . If $A_n \uparrow A$, then $\lim_{n\to\infty} \mu(A_n) = \mu(A)$.

- 2. Let (S, \mathcal{A}, μ) be a measure space and let $(A_n)_{n\geq 1}$ be a sequence in \mathcal{A} .
- (6) a. If $A_n \downarrow A$ and $\mu(S) = 1$, use Theorem 1 to show that

$$\lim_{n\to\infty}\mu(A_n)=\mu(A).$$

- (6) b. Give an example of a measure space (S, \mathcal{A}, μ) and a sequence $(A_n)_{n\geq 1}$ in \mathcal{A} such that $A_n \downarrow A$ and $\lim_{n\to\infty} \mu(A_n) \neq \mu(A)$.
 - 3. Let (S, A) and (T, B) be measurable spaces.
- (3) a. Complete the following definition: A function $f: S \to T$ is called *measurable* if ... Now take $(T, \mathcal{B}) = ([0, \infty), \mathcal{B}([0, \infty)))$ and let $f: S \to [0, \infty)$ be a measurable function. For $n \ge 1$ define

$$A_n := \left\{ s \in S : f(s) \ge \frac{1}{n} \right\},\$$

$$A := \left\{ s \in S : f(s) > 0 \right\}.$$

(4) b. Show that $A_n \in \mathcal{A}$ for all $n \geq 1$.

Let $\mu \colon \mathcal{A} \to [0, \infty]$ be a measure.

(5) c. Show that for all $n \ge 1$ we have

$$\mu(A_n) \le n \int_S f \, \mathrm{d}\mu.$$

- (5) d. Suppose that $\int_S f d\mu = 0$. Show that $\mu(A) = 0$.
- (12) 4. State and prove Fatou's lemma.

See also the next page.

- 5. Let λ denote the Lebesgue measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Let $f: \mathbb{R} \to [0, \infty)$ be given by $f(x) = e^{-|x|}$.
- (5) a. Prove that f is measurable and integrable with respect to λ . Let $(y_n)_{n\geq 1}$ be a sequence in $\mathbb R$ such that $y_n\to 0$ for $n\to\infty$.
- (6) b. Show that

$$\lim_{n\to\infty}\int_{\mathbb{R}}\sin(x^2\cdot y_n)\cdot e^{-|x|}\,\mathrm{d}\lambda(x)=0.$$

- 6. Let (S, \mathcal{A}, μ) be a measure space with $\mu(S) < \infty$ and let $p \in [1, \infty)$.
- (3) a. Give the definition of $L^p(S)$.
- (5) b. Let $f: S \to \mathbb{R}$ be a simple function. Show that $f \in L^p(S)$.

The value of each part of a problem is printed in the margin; the final grade is calculated using

$$Grade = \frac{Total}{70} \cdot 9 + 1$$

and rounded in the standard way.

This exam has been composed by the teacher and reviewed by the co-teacher.

- 1. a. A collection $A \subseteq \mathcal{P}(S)$ is called a σ -algebra if
 - (i) $\emptyset, S \in \mathcal{A}$;
 - (ii) $A \in \mathcal{A} \Longrightarrow A^c \in \mathcal{A}$;
 - (iii) $A_1, A_2, \ldots \in \mathcal{A} \Longrightarrow \bigcup_{k=1}^{\infty} A_k \in \mathcal{A}$.
 - b. For the inclusion " \subseteq ", note that $\mathcal{F} \subseteq \mathcal{A}$. Since \mathcal{A} is a σ -algebra, we also have $\sigma(\mathcal{F}) \subseteq \mathcal{A}$. For the inclusion " \supseteq ", take $A \in \mathcal{A}$. If A is countable, then $A = \bigcup_{s \in A} \{s\} \in \sigma(\mathcal{F})$. If A^c is countable, by the same argument $A^c \in \sigma(\mathcal{F})$ and thus also $A \in \sigma(\mathcal{F})$.
- 2. a. Set $B_n = A_n^c$ and $B = \bigcup_{n=1}^{\infty} B_n$. Then $B_n \uparrow B$, so by Theorem 1

$$\lim_{n\to\infty}\mu(B_n)=\mu(B)$$

Note that $\bigcup_{n=1}^{\infty} B_n = A^c$ by the law of De Morgan. Therefore

$$\mu(S) - \lim_{n \to \infty} \mu(A_n) = \lim_{n \to \infty} \mu(B_n) = \mu(B) = \mu(S) - \mu(A)$$

Since $\mu(S) = 1$, we can subtract it on both sides to obtain the conclusion

b. Take $(S, \mathcal{A}, \mu) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ and set $A_n = [n, \infty)$, which is closed and therefore $A_n \in \mathcal{B}(\mathbb{R})$. Then $A_n \downarrow \emptyset$, but

$$\lim_{n\to\infty}\mu(A_n)=\lim_{n\to\infty}\infty=\infty\neq 0=\mu(\varnothing).$$

- 3. a. A function $f: S \to T$ is called *measurable* if for each $B \in \mathcal{B}$, one has $f^{-1}(B) \in \mathcal{A}$.
 - b. We have $A_n = f^{-1}([\frac{1}{n}, \infty))$. As $[\frac{1}{n}, \infty)$ is closed, we have $[\frac{1}{n}, \infty) \in \mathcal{B}([0, \infty))$. Since f is measurable, we conclude $A_n \in \mathcal{A}$.
 - c. Using the properties of the Lebesgue integral, we calculate

$$\mu(A_n) = \int_{A_n} 1 \, \mathrm{d}\mu \le \int_{A_n} nf \, \mathrm{d}\mu \le n \int_{S} f \, \mathrm{d}\mu.$$

d. By c), we know $\mu(A_n)=0$ for all $n\geq 1$. Therefore, by σ -subadditivity (alternatively use Theorem 1)

$$\mu(A) = \mu\Big(\bigcup_{n=1}^{\infty} A_n\Big) \le \sum_{n=1}^{\infty} \mu(A_n) = 0.$$

Since $\mu(A) \geq 0$, we conclude $\mu(A) = 0$.

5. a. f is continuous and therefore measurable. Moreover, Lebesgue and improper Riemann integrals coincide for positive continuous functions. Therefore

$$\int_{\mathbb{R}} e^{-|x|} d\lambda(x) = \int_{-\infty}^{\infty} e^{-|x|} dx < \infty,$$

so f is integrable.

b. Set $f_n = \sin(x^2 \cdot y_n) \cdot e^{-|x|}$ for $n \ge 1$, which is continuous and therefore measurable. Note that $f_n \to 0$ pointwise and $|f_n| \le f$. Since f is integrable by a), the DCT yields

$$\lim_{n\to\infty}\int_{\mathbb{R}}\sin(x^2\cdot y_n)\cdot e^{-|x|}\,\mathrm{d}\lambda(x)=\int_{\mathbb{R}}0\,\mathrm{d}\lambda(x)=0.$$

6. a.

$$L^p(S):=\Big\{f\colon S\to\mathbb{R}: f \text{ is measurable and } \int_S |f|^p\,d\mu<\infty\Big\}.$$

b. For $A \in \mathcal{A}$ and $f = \mathbf{1}_A$, we have

$$\int_{S} |f|^{p} d\mu = \mu(A) \le \mu(S) < \infty.$$

Therefore $f \in L^p(S)$. Since $L^p(S)$ is a vector space and a simple function is a linear combination of indicator functions, the result follows.