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• Clearly write your first and last name and student number on your answer sheet.

• In this exam you are not allowed to use a book or notes. You are allowed to use a graphical
calculator and the table of Laplace transforms that is provided.

• You may write your answers in Dutch or English.

• Do not write your answers in red.

• Unless explicitly stated otherwise, you are required to provide clear justifications for any
statements you make. In particular, if you use a lemma, theorem, or corollary from the
course, show that all the required assumptions hold, and clearly state which conclusion(s)
you draw.

• This exam has 7 questions. The grade is 1+(9 · #pts)/48, rounded to halves.



Important!

• If you use series solutions, you do not need to derive closed-form expresssions
for the coefficients in the series from their recurrence relations.

• If you need to draw a focus or a centre in the phase plane, you do not need
to be precise in the orientation or size, but you should pay attention to the
direction of rotation and indicate the ‘forward time’ direction along orbits.
For other types of behaviour in the phase plane, you should also indicate and
justify important directions.

N.B. The situations above may or may not occur in the exam.

1 In this question, an implicit solution suffices if an explicit solution cannot be given.

(a) Find the solution of the following initial value problem:

v′(t) + etv(t) = et, v(0) = 1.

[3 pts]

(b) Find the general solution of

u′(x) = x2u(x) + xu(x).

[3 pts]

(c) Find the solution of the following initial value problem:

xy2(x) + x2y(x)y′(x) = 0, y(1) = 3.

[3 pts]

2 (a) Find the general solution of

2y′′(t) + 4y′(t) + 2y(t) = e−t

without using the Laplace transformation. [4 pts]

(b) Use the Laplace transformation to find the solution of the following initial value
problem:

y′′′(t) + y(t) =
1

20
t5 + t, y(0) = 0, y′(0) = 1, y′′(0) = −6.

[4 pts]

3 (a) Find two linearly independent solutions of

(1 + x)y′′(x)− xy(x) = 0

that are defined (at least) in an open neighbourhood of x = 0 [4 pts]

(b) Justify why your solutions from part (a) indeed exist on an open neighbourhood of
x = 0. [1 pts]

(c) Give the solution of the initial value problem consisting of the ODE from (a) with
y(0) = 0 and y′(0) = 3. [1 pts]

(The exam continues on the next page)



4 (a) Solve the following initial value problem for x : R → R2:

x′(t) =

(
1 2
4 −1

)
x(t), x(0) =

(
0
3

)
.

[3 pts]

(b) Draw the phase portrait near the origin for the system in part (a). (Recall the
instructions at the top of p.2 of this exam.) [2 pts]

(c) Explicitly transform the initial value problem from part (a) into

y′′(t) = 9y(t), y(0) = 3, y′(0) = 3.

Hint: Let y be a linear combination of x1 and x2. [2 pts]

(d) Transform the initial value problem from part (c) into an initial value problem for
v : R → R2 of the form v′(t) = Av(t) with corresponding initial value, where the
matrix A ∈ R2×2 has a zero entry in the top left (first row, first column). [2 pts]

5 (a) Show that the system

x′(t) =

(
0 4
−1 0

)
x(t)

has a closed orbit (an orbit that is a closed curve) that goes through the point

(
2
0

)
.

[2 pts]

(b) Prove that the orbit from part (a) satisfies an implicit equation of the form(
x1(t)

a

)2

+

(
x2(t)

b

)2

= 1

and determine the values of the constants a, b ∈ R. [2 pts]

(c) Prove that the system

x′(t) =

(
0 4
−1 0

)
x(t) +

(
x2
1(t) + 4x2

2(t)− 4
1
4
x2
1(t) + x2

2(t)− 1

)
has a periodic solution. [2 pts]

(d) Give a nonempty open set A ⊂ R2 such that every trajectory of the system in part
(c) that intersects A must be fully contained in A. Don’t forget to prove that your
set A indeed has the required property. [1 pts]

(The exam continues on the next page)



6 (a) Complete the following version of Grönwall’s lemma:

Let I ⊂ R be a nondegenerate interval, t0 ∈ I, and let u,w : I → R be continuous.
If there is a C > 0 such that, for all t ∈ I with t ≥ t0,

w(t) ≤ u(t) + C

∫ t

t0

w(s) ds,

then, for all t ∈ I with t ≥ t0,
w(t) ≤ . . . .

[1 pts]

(b) Assume that I ⊂ R is a nondegenerate interval, 0 ∈ I, x0 ∈ R, and f : R → R
is Lipschitz continuous on R with Lipschitz constant L > 0. Let x : I → R be a
solution (on all of I) of the following initial value problem:{

x′(t) = f(x(t)),

x(0) = x0.

Prove that x is the unique solution of the initial value problem on I. [4 pts]

7 Consider the system

x′(t) = 3x(t)y(t)− y(t)− 2,

y′(t) = 5x2(t)− 2y2(t)− 9x(t) + 4y(t) + 2.

(a) Find all equilibrium points of the system that lie on the vertical line x = 1. [1 pts]

(b) Choose one of the equilibrium point(s) you found in part (a). Linearise the system
around this equilibrium point. [2 pts]

(c) Prove if the equilibrium point (of the full system from part (a)) that you have chosen
is asymptotically stable, stable but not asymptotically stable, or unstable. [1 pts]



Answers (copyright TU Delft 2024)

Warning 1! This document gives possible answers. This does not mean these are the only
possible answers.
Warning 2! In this document we have not always written down all the intermediate compu-
tation steps. In your exam you are encouraged to write down enough steps so that the markers
can (a) follow your computation easily and (b) can track where the mistake(s) are if you make
any.

1 In this question, an implicit solution suffices if an explicit solution cannot be given.

(a) This answer is guessable: v(t) = 1. Full points!

Also the method of integrating factors can be used. The integrating factor is e
∫
et dt =

ee
t
, which leads to (

ee
t

v
)′
(t) = ee

t

et.

Integrating both sides (using substitution u = et on the right-hand side) we get

ee
t

v(t) =

∫
ee

t

et dt =

∫
eu du = eu + C = ee

t

+ C, C ∈ R.

Thus v(t) = Ce−et + 1.

With the initial condition v(0) = Ce−1 + 1 = 1, we get C = 0 and thus v(t) = 1.

(b) This is a separable equation:

1

u(x)
u′(x) = x(x+ 1)

and thus we can integrate:∫
1

u(x)
u′(x) dx =

∫
x(x+ 1) dx.

Integrating both sides (and using substitution on the left-hand side) we get

log |u(x)| = 1

3
x3 +

1

2
x2 + C, C ∈ R.

Thus
u(x) = Ae

1
3
x3+ 1

2
x2

, A ∈ R.

Here we have included the trivial solution u(x) = 0 by allowing A = 0. This solution
should be mentioned.

(c) Since (in an abuse of notation) ∂
∂y
xy2 = 2xy = ∂

∂x
x2y, the equation is exact.

Thus we find a constant of motion ϕ(r, s) by integrating

∂ϕ

∂r
(r, s) = rs2.



Thus

ϕ(r, s) =
1

2
rs2 + f(s)

for some function f . Using
∂ϕ

∂s
(r, s) = r2s,

it follows that f(s) = 0 and thus ϕ(r, s) = 1
2
r2s2. Hence

x2y2(x) = C, C ∈ R.

Since y(1) = 3, we get C = 9, thus the implicit solution is

x2y2(x) = 9.

The answer y(x) = 3/x is also fine. (The initial conditions shows that we are
interested in positive x and positive y.) Other methods of integrating the derivatives
to find ϕ are also fine.

2 (a) First we solve the homogeneous equation

2y′′h(t) + 4y′h(t) + 2yh(t) = 0

by solving 2r2 + 4r + 2 = 0 ⇔ r = −1. Thus

yh(t) = C1e
−t + C2te

−t, C1, C2 ∈ R.

To find a particular solution of the nonhomogeneous equation, we could use variation
of parameters, but here we will use judicious guessing. Since the right-hand side e−t

is a solution of the homogeneous equation, and so is te−t, we will try

yp(t) = At2e−t, A ∈ R.

Then
y′p(t) = A(2t− t2)e−t and y′′p(t) = A(2− 4t+ t2)e−t.

Substituting into the equation gives:

A(4− 8t+ 2t2 + 8t− 4t2 + 2t2)e−t = 4Ae−t = e−t.

Thus A = 1
4
and yp(t) =

1
4
t2e−t. Hence

y(t) = yh(t) + yp(t) = C1e
−t + C2te

−t +
1

4
t2e−t.

(b) We write Y (s) for the Laplace transform of y(t). From the table of Laplace trans-
forms we see that L[t5](s) = 120

s6
and L[t] = 1

s2
and thus

L
[
1

20
t5 + t

]
(s) =

6

s6
+

1

s2
.



For the left-hand side, we use the form of the transform of derivatives (which is also
in the table):

L[y′′′ + y](s) = s3Y (s)− s2y(0)− sy′(0)− y′′(0) + Y (s) = (s3 + 1)Y (s)− s+ 6.

Thus, by transforming both sides of the equation and rearranging terms, we obtain

(s3 + 1)Y (s) =
6

s6
+

1

s2
+ s− 6 =

s7 − 6s6 + s4 + 6

s6
.

Via long division, for example, it can be computed that

s7 − 6s6 + s4 + 6

s3 + 1
= s4 − 6s3 + 6.

Using the table of Laplace transforms to back-transform

s4 − 6s3 + 6

s6
=

1

s2
− 6

s3
+

6

s6
,

we find

y(t) = t− 3t2 +
1

20
t5.

3 (a) The coefficients of this equation are analytic at x = 0, so we can attempt a power
series Ansatz:

y(x) =
∞∑
n=0

anx
n,

xy(x) =
∞∑
n=0

anx
n+1 =

∞∑
n=1

an−1x
n,

y′′(x) =
∞∑
n=2

n(n− 1)anx
n−2 =

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n,

xy′′(x) =
∞∑
n=2

n(n− 1)anx
n−1 =

∞∑
n=1

(n+ 1)nan+1x
n.

Substituting this into the equation, we get

2a2 +
∞∑
n=1

[
(n+ 2)(n+ 1)an+2 + (n+ 1)nan+1 − an−1

]
xn = 0.

Thus, a2 = 0 and, for all n ≥ 1,

(n+ 2)(n+ 1)an+2 + (n+ 1)nan+1 − an−1 = 0.

Rewriting the latter condition, we find for n ≥ 1 that

an+2 = − n

n+ 2
an+1 +

1

(n+ 1)(n+ 2)
an−1.

We obtain two linearly independent solutions by choosing a0 = 0 and a1 = 1 for one
solution and a0 = 1 and a1 = 0 for the other.



(b) We have seen a theorem that says that the radius of convergence of the solution is at
least as large as the smallest of the radii of convergence of the analytic coefficients
in the equation. Those coefficients are all polynomials and thus have infinite radius
of convergence, so in particular the radii of convergence of the coefficients, and thus
the solutions, are nonzero.

(c) Choose the solution from part (a) which has a0 = 0 and call this function y. Then
y(0) = a0 = 0 and y′(0) = a1 = 1. Thus the solution to the IVP is 3y.

4 (a) We compute the eigenvalues of the matrix:∣∣∣∣1− λ 2
4 −1− λ

∣∣∣∣ = (1− λ)(−1− λ)− 8 = λ2 − 9 = 0 ⇔ λ = ±3.

To compute the eigenvector v1 corresponding to λ1 = −3, we row-reduce the matrix(
4 2
4 2

)
∼

(
2 1
0 0

)
,

thus

w1 =

(
−1
2

)
(or any multiple of this vector).

Similar, for v2 corresponding to λ2 = 3, we row-reduce(
−2 2
4 −4

)
∼

(
1 −1
0 0

)
,

thus

w2 =

(
1
1

)
(or any multiple of this vector).

Hence the general solution of the ODE is

x(t) = c1e
−3t

(
−1
2

)
+ c2e

3t

(
1
1

)
, c1, c2 ∈ R.

Substituting the initial condition gives(
−c1 + c2
2c1 + c2

)
=

(
0
3

)
,

hence
c1 = c2 = 1

and therefore

x(t) = e−3t

(
−1
2

)
+ e3t

(
1
1

)
.



(b)

In addition to having the correct picture, you have to indicate the directions of
the eigenvectors and mention in some way which directions correspond to which
eigenvectors.

You also have to indicate the positive t-direction along orbits, determined by the
sign of the eigenvalues.

The arrows of the direction field do not need to be drawn (but the software used to
create a nice picture here did this automatically).

(c) As suggested by the question, we try a transformation of the form y = ax1 + bx2,
for some a, b ∈ R. Then, using the system from part (a),

y′(t) = ax′
1(t) + bx′

2(t) = a(x1(t) + 2x2(t)) + b(4x1(t)− x2(t))

= (a+ 4b)x1(t) + (2a− b)x2(t),

y′′(t) = (a+ 4b)x′
1(t) + (2a− b)x′

2(t)

= (a+ 4b)(x1(t) + 2x2(t)) + (2a− b)(4x1(t)− x2(t))

= 9ax1(t) + 9bx2(t)

= 9y(t).

We see that we obtain the ODE for y for any choice of a, b ∈ R.
The initial conditions determine a and b:

3 = y(0) = ax1(0) + bx2(0) = 3b,

3 = y′(0) = ax′
1(0) + bx′

2(0) = a(x1(0) + 2x2(0)) + b(4x1(0)− x2(0)) = 6a− 3b.

Hence a = b = 1 and thus the transformation

y = x1 + x2

turns the initial value problem of part (a) into the IVP of part (c).

(d) We apply the standard procedure to transform a higher-order ODE into a system of
first order ODEs, i.e., we set

v1 = y and v2 = y′.



Using the ODE of part (b) we get

v′1 = y′ = v2,

v′2 = y′′ = 9y = 9v1.

Thus

A =

(
0 1
9 0

)
.

For the initial conditions we find v1(0) = y(0) = 3 and v2(0) = y′(0) = 3.

5 (a) The eigenvalues of the matrix of the system are computed to be

λ2 + 4 = 0 ⇔ λ = ±2i.

Since these eigenvalues are purely imaginary, we know that all orbits are closed
curves.

Because of the existence theorem, for each initial value, a corresponding solution to

the system exists. In particular there is one starting at

(
2
0

)
which generates the

required orbit.

Alternatively, with just slightly more work, you can also explicitly compute the
solution to the initial value problem:

x(t) =

(
2 cos(2t)
− sin(2t)

)
.

Doing this is also fine and leads to less work in part (b). Some of the points for (b)
could be given based on this work in (a).

(b) From the equations x′
1(t) = 4x2(t) and x′

2(t) = −x1(t) we obtain, with some abuse
of notation, that

dx2

dx1

=
−x1

4x2

.

This equation is separable:

4x2
dx2

dx1

= −x1.

Integrating both sides with respect to x1 gives

2x2
2 = −1

2
x2
1 + C, C ∈ R.

Using that the orbit goes through

(
2
0

)
, we find that C = 2.

Thus (x1

2

)2

+ x2
2 = 1.

Hence a = ±2 and b = ±1.

If you have computed an explicit soluton in part (a) you will have less work in part
(b) and can just substitute the explicit solution into the equation of the implicit
solution to directly compute the constants.



(c) On the curve x2
1+4x2

2 = 4 the equation reduces to the system from part (a). Because
we know, from parts (a) and (b), that this curve is an orbit for the system of part
(a), it is also an orbit for this system.

We have seen a theorem that says that closed orbits that do not contain equilibrium
points correspond to periodic solutions. Since(

0 4
−1 0

)
x(t) ̸= 0

along the curve under consideration, we can apply this theorem to conclude that a
periodic solution exists.

(d) Since the right-hand side of the system from part (c) is polynomial (and thus con-
tinuously differentiable), it is Lipschitz continuous on any bounded open subset of
R2. In particular, we can choose a subset which is large enough to contain the orbit
of the periodic solution we found in part (c). Thus, by the uniqueness theorem for
orbits, within this subset orbits do not intersect.

Denote the interior of the set which is bounded by the orbit from part (c) by A.
Then any trajectory that shares a point with A will have to lie in A completely.

6 (a)

w(t) ≤ u(t) + C

∫ t

t0

u(s)eC(t−s) ds.

(b) Assume y : I → R is also a solution.

Let t ≥ 0. Since x and y satisfy

x(t) = x0 +

∫ t

0

f(x(s)) ds,

y(t) = x0 +

∫ t

0

f(y(s)) ds,

we have, for all t ∈ I,

|x(t)− y(t)| =
∣∣∣∣∫ t

0

(f(x(s))− f(y(s))) ds

∣∣∣∣ ≤ ∫ t

0

|f(x(s))− f(y(s))| ds

≤ L

∫ t

0

|x(s)− y(s)| ds,

where we used Lipschitz continuity of f in the last line. Setting w(t) := |x(t)−y(t)|,
we have

w(t) ≤ L

∫ t

0

w(s) ds

and thus we can apply the version of Grönwall’s theorem from part (a) with t0 = 0,
C = L, and u(t) = 0, to conclude w(t) ≤ 0.

Since also w(t) ≥ 0, we have, for all t ∈ I, w(t) = 0, and thus x = y.

7 (a) We look for points (1, y) where the right-hand side of the system is zero:

3y − y − 2 = 0 ⇔ y = 1 and 5− 2y − 9 + 4y + 2 = 0 ⇔ y = 1.

Thus (1, 1) is the only equilibrium point on the desired line.



(b) There is only one equilibrium point to choose: (1, 1). Writing the right-hand side of
the system as

f(r, s) =

(
3rs− s− 2

5r2 − 2s2 − 9r + 4s+ 2

)
,

we compute

∂f1
∂r

(r, s) = 3s,
∂f1
∂r

(1, 1) = 3,

∂f1
∂s

(r, s) = 3r − 1,
∂f1
∂s

(1, 1) = 2,

∂f2
∂r

(r, s) = 10r − 9,
∂f2
∂r

(1, 1) = 1,

∂f2
∂s

(r, s) = −4s+ 4,
∂f2
∂s

(1, 1) = 0.

Thus the linearised system becomes(
x′(t)
y′(t)

)
=

(
3 2
1 0

)(
x(t)− 1
y(t)− 1

)
.

(c) Since the right-hand side of the system in part (a) is twice continuously differentiable,
we may hope to be able to use the theorem that relates the stability of the equilibrium
point in the linearised system to that in the nonlinear system.

We compute the eigenvalues of the matrix from part (c):

−λ(3− λ)− 2 = λ2 − 3λ− 2 = 0 ⇔ λ1,2 =
1

2
(3±

√
17).

Since 3 +
√
17 > 0, one of the eigenvalues has positive real part and thus we can

indeed use the theorem to conclude that the equilibrium point is unstable.


	endterm ODE
	ODE uitwerkingen

