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All answers should be carefully motivated. Results from the course

book may be used without proof, provided they are cited correctly.

The use of any electronic equipment or other source of information

is prohibited.
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free)]

Unless otherwise stated, the scalar field is C.

1. Let K be a convex subset of a normed space X.

(a) Prove that the closure K and the interior int(K) are convex.

Hint: For the second statement, first show that if the open balls
B(x; r) and B(y; r) are contained in K, then so is B((1−λ)x+λy; r)
for every 0 < λ < 1.

(b) Prove that if int(K) ̸= ∅, then int(K) = K.

(c) Show by example that the assertion of (b) may fail ifK is not convex.

Solution:

(a) To prove that K is convex, let x, y ∈ K and fix any 0 < λ < 1. By
definition of the closure, there exist sequences (xn) and (yn) in K such
that

xn → x and yn → y as n → ∞.

Since K is convex, for every n the convex combination

(1− λ)xn + λyn

belongs to K. The operations of addition and scalar multiplication are
continuous in a normed space, so taking the limit as n → ∞ we obtain

(1− λ)x+ λy ∈ K.

This shows that K is convex.

Next, we show that the interior int(K) is convex.
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We start by proving the assertion in the Hint. Suppose x, y ∈ int(K).
This means that for some r > 0 we have

B(x; r) ⊆ K and B(y; r) ⊆ K.

Let 0 < λ < 1. We wish to show that (1−λ)x+λy ∈ int(K), and for this
it suffices to prove that

B((1− λ)x+ λy; r) ⊆ K.

Take an arbitrary point

z ∈ B((1− λ)x+ λy; r).

Then, by definition of an open ball,

∥z − ((1− λ)x+ λy)∥ < r.

Define
u := z − ((1− λ)x+ λy),

so that ∥u∥ < r. Notice that

z = (1− λ)x+ λy + u = (1− λ)(x+ u) + λ(y + u).

Since ∥u∥ < r, we have

∥x+ u− x∥ = ∥u∥ < r and ∥y + u− y∥ = ∥u∥ < r,

which implies

x+ u ∈ B(x; r) and y + u ∈ B(y; r).

By assumption, both x+u and y+u belong to K. Now, since K is convex,
any convex combination of points in K is also in K. Therefore,

(1− λ)(x+ u) + λ(y + u) ∈ K.

But we have already noted that

(1− λ)(x+ u) + λ(y + u) = z.

Hence, z ∈ K. Since z was chosen arbitrarily in B((1 − λ)x + λy; r), we
conclude that

B((1− λ)x+ λy; r) ⊆ K,

which completes the proof of the hint.

Now let x, y ∈ int(K). Then there exist radii r1 > 0 and r2 > 0 such that

B(x; r1) ⊆ K and B(y; r2) ⊆ K.
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If we set r = min{r1, r2}, then both B(x; r) and B(y; r) are contained in
K. By the hint, for any 0 < λ < 1 the open ball

B((1− λ)x+ λy; r)

is contained in K. In particular, the point (1 − λ)x + λy is an interior
point of K, meaning

(1− λ)x+ λy ∈ int(K).

Thus, int(K) is convex.

K

x

y

x+ u

y + u

(1− λ)x+ λy

z = (1− λ)(x+ u) + λ(y + u)

u

(b) Assume that int(K) ̸= ∅. Since int(K) ⊆ K ⊆ K, we have

int(K) ⊆ K.

For the reverse inclusion, let z ∈ K; we wish to show that every neigh-
borhood of z intersects int(K). Choose any interior point y ∈ int(K) and
let r > 0 be such that

B(y; r) ⊆ K.

Since z ∈ K, any open neighborhood of z must intersect K. Moreover, by
the convexity of K (proved in part (a)), the line segment joining z and y is
contained in K. In particular, points on this segment that are sufficiently
close to y will lie inside the open ball B(y; r) and hence in int(K). This
shows that every neighborhood of z contains a point of int(K), so that
z ∈ int(K). Therefore,

K ⊆ int(K),

and we conclude that int(K) = K.

(c) To illustrate that the equality in (b) may fail when K is not convex,
consider the following example in R. Define

K = [0, 1] ∪ {2}.

Here, the interior int(K) is the open interval (0, 1), and its closure equals
[0, 1]. On the other hand, since K is closed, the closure of K equals K,
which is strictly larger than int(K).
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2. Let H be an infinite-dimensional Hilbert space with inner product (·|·)
and orthonormal basis (hn)n⩾1, and fix an operator T ∈ L (H).

(a) Prove that for all h ∈ H one has limn→∞(Thn|h) = 0.

Hint: Consider T ⋆h, where T ⋆ is the Hilbert space adjoint of T .

(b) Prove that if T is compact, then limn→∞ ∥Thn∥ = 0.

Hint: Argue by contradiction.

Solution:

(a) Let h ∈ H be arbitrary and consider T ⋆h ∈ H, where T ⋆ is the the
Hilbert space adjoint of T . Since (hn) is an orthonormal basis for H, we
can express T ⋆h in terms of its Fourier series:

T ⋆h =
∞∑
n=1

(T ⋆h|hn)hn.

By Parseval’s identity, we have

∞∑
n=1

|(T ⋆h|hn)|2 = ∥T ⋆h∥2 < ∞.

In particular, the sequence ((⟨T ⋆h|hn)) is square-summable and therefore
this sequence converges to zero as n → ∞. Notice that

(T ⋆h|hn) = (hn|T ⋆h) = (Thn |h),

so it follows that
lim
n→∞

(Thn |h) = 0.

(b) Now assume that T is a compact operator. We argue by contradiction.
Suppose that

lim
n→∞

∥Thn∥ ≠ 0.

Then there exists an ε > 0 and a subsequence (hnk
) such that

∥Thnk
∥ ⩾ ε for all k ⩾ 1.

Since T is compact, the sequence (Thnk
) has a convergent subsequence;

denote it by (Thnkj
), and let its limit be x ∈ H. By the continuity of the

inner product, for any fixed h ∈ H we have

lim
j→∞

(Thnkj
|h) = (x |h).

However, by part (a) we know that

lim
j→∞

(Thnkj
|h) = 0 for every h ∈ H,
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which forces (x |h) = 0 for all h ∈ H, and hence x = 0. Consequently,

lim
j→∞

∥Thnkj
∥ = ∥x∥ = 0,

which contradicts the fact that ∥Thnkj
∥ ⩾ ε for all j ⩾ 1. Therefore, the

assumption must be false, and we conclude that

lim
n→∞

∥Thn∥ = 0.

3. Let M be a compact metric space, X a Banach space, and suppose that
f : M → X is a function which has the property that the scalar-valued
function ξ 7→ ⟨f(ξ), x∗⟩ belongs to C(M) for every x∗ ∈ X∗.

(a) Prove that the mapping T : X∗ → C(M) defined by x∗ 7→ ⟨f(·), x∗⟩
is closed.

(b) Deduce that there exists a constant C ⩾ 0 such that

∥⟨f(·), x∗⟩∥C(M) ⩽ C∥x∗∥, x∗ ∈ X∗.

Solution:

(a) Define the mapping

T : X∗ → C(M), T (x∗) = ⟨f(·), x∗⟩.

We wish to prove that T is closed; that is, if a sequence (x∗n) in X∗ satisfies

x∗n → x∗ in X∗

and
Tx∗n → g in C(M),

then we must have g = Tx∗. For any ξ ∈ M , note that

Tx∗n(ξ) = ⟨f(ξ), x∗n⟩.

Since x∗n → x∗ in X∗ and the dual pairing is continuous, it follows that

⟨f(ξ), x∗n⟩ → ⟨f(ξ), x∗⟩.

On the other hand, the uniform convergence of Tx∗n to g implies that

g(ξ) = lim
n→∞

⟨f(ξ), x∗n⟩ = ⟨f(ξ), x∗⟩

for every ξ ∈ M . Hence, g = Tx∗, and so the graph of T is closed.

(b) Since X∗ and C(M) are Banach spaces, the Closed Graph Theorem
applies. It follows that the linear operator T is bounded; that is, there
exists a constant C ⩾ 0 such that

∥Tx∗∥C(M) = ∥⟨f(·), x∗⟩∥C(M) ⩽ C∥x∗∥

for all x∗ ∈ X∗. This completes the proof.
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4. Consider the bounded operator T on C[0, 1] defined by

Tf(ξ) := ξf(ξ), f ∈ C[0, 1], ξ ∈ [0, 1].

(a) Prove that T has spectrum σ(T ) = [0, 1].

(b) Prove that T has no eigenvalues.

(c) Find an expression for the adjoint operator T ∗.

Solution:

(a) Let λ ∈ C and consider the operator T − λI. For each ξ ∈ [0, 1] we
have

(λI − T )f(ξ) = (λ− ξ)f(ξ).

If λ /∈ [0, 1], then λ− ξ ̸= 0 for all ξ ∈ [0, 1], and the function

g(ξ) =
1

λ− ξ

is continuous on [0, 1]. Thus, the inverse (T − λI)−1 exists and is given
by

((λI − T )−1h)(ξ) =
h(ξ)

λ− ξ
,

showing that λI − T is invertible. Conversely, if λ ∈ [0, 1], then (λI −
T )f(ξ) = (λ − ξ)f(ξ) for all ξ ∈ [0, 1] and f ∈ C[0, 1]. In particular,
(λI − T )f(λ) = 0 for all f ∈ C[0, 1]. This implies that if g ∈ C[0, 1] is
such that g(λ) ̸= 0, then g is not in the range of λI−T . Therefore λI−T
is not injective and hence not invertible.

We conclude that σ(T ) = [0, 1].

(b) Next, we show that T has no eigenvalues. Suppose that there exists
λ ∈ C and a nonzero function f ∈ C[0, 1] such that

Tf = λf,

i.e.,
ξf(ξ) = λf(ξ) for all ξ ∈ [0, 1].

Then, for every ξ ∈ [0, 1],

(ξ − λ)f(ξ) = 0.

It follows that f(ξ) = 0 for all ξ ∈ [0, 1] \ {λ}. Since f is continuous, this
implies that f(ξ) = 0 for all ξ ∈ [0, 1], and therefore f = 0 as an element
of C[0, 1]. This contradicts the assumption that f is nonzero.

(c) Finally, we determine an expression for the adjoint operator T ∗. By the
Riesz Representation Theorem, the dual space of C[0, 1] can be identified
with the space of finite regular Borel measures on [0, 1]. Let µ be such a
measure. For any f ∈ C[0, 1], we have

⟨Tf, µ⟩ =
∫ 1

0
(Tf)(ξ) dµ(ξ) =

∫ 1

0
ξf(ξ) dµ(ξ).
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We wish to find a measure ν = T ∗µ such that

⟨f, T ∗µ⟩ =
∫ 1

0
f(ξ) dν(ξ) =

∫ 1

0
ξf(ξ) dµ(ξ)

for all f ∈ C[0, 1]. Informally, this measure ν is given by

“dν(ξ) = ξ dµ(ξ)”.

To make this rigorous, we define the measure ν by setting

ν(B) :=

∫
B
ξ dµ(ξ)

for Borel sets B ⊆ [0, 1]. Rewriting this as∫ 1

0
1B dν =

∫ 1

0
ξ1B(ξ) dµ(ξ),

by linearity this implies that for simple functions g we have∫ 1

0
g(ξ) dν(ξ) =

∫ 1

0
ξg(ξ) dµ(ξ).

Applying this to simple functions gn approximating a given function f ∈
C[0, 1] uniformly, by dominated convergence we obtain

⟨Tf, µ⟩ =
∫ 1

0
ξf(ξ) dµ(ξ) = lim

n→∞

∫ 1

0
ξgn(ξ) dµ(ξ)

= lim
n→∞

∫ 1

0
gn(ξ) dν(ξ) =

∫ 1

0
f(ξ) dν(ξ) = ⟨f, ν⟩.

This being true for every f ∈ C[0, 1], we obtain that T ∗µ = ν.

5. Let m : (0, 1) → C be a continuous function, and consider the densely
defined linear operator (A,D(A)) in L2(0, 1) defined by

D(A) := Cc(0, 1),

Af := mf for f ∈ D(A),

where mf(ξ) = m(ξ)f(ξ) for ξ ∈ (0, 1).

(a) Prove that (A,D(A)) is closable.

(b) Prove that the closure is a bounded operator on L2(0, 1) if and only
if m is bounded.

Suppose now that we are in the situation of (b), and let T := A be the
corresponding bounded operator on L2(0, 1).

(c) Prove that Tf = mf for all f ∈ L2(0, 1).
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Solution:

(a) We wish to show that the operator

A : Cc(0, 1) → L2(0, 1), Af = mf,

is closable. By definition, A is closable if whenever a sequence (fn) in
Cc(0, 1) satisfies

fn → 0 in L2(0, 1) and Afn = mfn → g in L2(0, 1),

then necessarily g = 0.

By passing to a subsequence if necessary, we may assume that fn(x) → 0
almost everywhere and m(x)fn(x) → g(x) almost everywhere. But the
first implies that m(x)fn(x) → 0 almost everywhere. This forces g = 0
almost everywhere, so g = 0 as an element of L2(0, 1). This shows that
A is closable.

(b) We now prove that the closure A is a bounded operator on L2(0, 1) if
and only if m is bounded.

Suppose first that m is bounded, i.e., there exists a constant M such that

|m(x)| ⩽ M for all x ∈ (0, 1).

Then for every f ∈ Cc(0, 1) we have

∥Af∥L2 = ∥mf∥L2 ⩽ M∥f∥L2 .

This shows that A is a bounded operator on its dense domain Cc(0, 1)
and hence extends uniquely to a bounded operator on all of L2(0, 1). By
the definition of closure, this operator is the closure A. Therefore, A is
bounded.

Conversely, assume that A is bounded on L2(0, 1). Then there exists a
constant C such that

∥mf∥L2 = ∥Af∥L2 = ∥Af∥L2 ⩽ C∥f∥L2 for all f ∈ Cc(0, 1).

If m were unbounded, for each integer k ⩾ 1 one could find a point
xk ∈ (0, 1) with

|m(xk)| > k

(keep in mind that m is continuous on (0, 1)). Using the continuity of m,
choose a compact interval Ik ⊆ (0, 1) centered at xk such that

|m(x)| > k for all x ∈ Ik.

Pick a function fk ∈ Cc(0, 1) with supp(fk) ⊆ Ik and normalized so that
∥fk∥L2 = 1. It then follows that

∥Afk∥L2 = ∥mfk∥L2 ⩾ k∥fk∥L2 = k,
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which contradicts the boundedness of A. Hence, m must be bounded.

(c) Now suppose we are in the situation of (b) so that m is bounded, and
let

T := A : L2(0, 1) → L2(0, 1)

be the bounded extension of A. We wish to show that for every f ∈
L2(0, 1) we have

Tf = mf (almost everywhere).

Since Cc(0, 1) is dense in L2(0, 1), for any f ∈ L2(0, 1) there exists a
sequence (fn) in Cc(0, 1) such that

fn → f in L2(0, 1).

For each n, we have
Tfn = Afn = mfn.

Because T is bounded (and hence continuous), it follows that

Tfn → Tf in L2(0, 1).

On the other hand, the bounded multiplication operator defined by m
(which is bounded since m ∈ L∞(0, 1)) is continuous on L2(0, 1), so that

mfn → mf in L2(0, 1).

By uniqueness of limits in L2(0, 1), we must have

Tf = mf.

-- The end --
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