Intermediate exam Applied Functional Analysis (wi4203) January 10, 2025, 13.45 - 15.30

Grading: 2 + 2 + 2 + (1 + 1 + 1) + (1 free)

Unless otherwise stated all vector spaces are over the scalar field \mathbb{C} .

Arguments should be presented in full detail. Results from the course book may be quoted without proof.

 $\sqrt{1}$. On the Banach space c_0 consider the right shift operator $T \in \mathcal{L}(c_0)$, given by

$$T:(a_1,a_2,a_3,\ldots)\mapsto (0,a_1,a_2,\ldots).$$

Find the spectrum $\sigma(T)$.

2. Let T be a compact operator on a Banach space X. Show that the range $\mathsf{R}(T)$ is closed if and only if $\mathsf{R}(T)$ is finite-dimensional.

Hint: In one direction, use the open mapping theorem.

√ 3. Let H be a Hilbert space. Show that a nonzero selfadjoint operator $T \in \mathcal{L}(H)$ is positive if and only if

$$||I - T/||T||| \leqslant 1.$$

Hint: Start by explaining why a selfadjoint operator $S \in \mathcal{L}(H)$ satisfies $||S|| \leq 1$ if and only if $|(Sx|x)| \leq 1$ for all $x \in H$ satisfying $||x|| \leq 1$.

4. Let A generate a C_0 -semigroup $(S(t))_{t\geqslant 0}$ on a Banach space X such that

$$\lim_{t \downarrow 0} ||S(t) - I|| = 0.$$

For t > 0 consider the operator $T_t \in \mathcal{L}(X)$ defined by

$$T_t x := \int_0^t S(s) x \, \mathrm{d}s, \quad x \in X.$$

- (a) Show that there exists a real number $\delta > 0$ such that for all $t \in (0, \delta)$ we have $||I \frac{1}{t}T_t|| < 1$.
- (b) Using the Neumann series, deduce that for all $t \in (0, \delta)$ the operator T_t is invertible.
- (c) Show that for all $t\in(0,\delta)$ we have $A=T_t^{-1}(S(t)-I),$ and deduce that A is a bounded operator.

Hint: Find an expression for $T_t(\frac{1}{t}(S(t)x-x))$ and let $t\downarrow 0$.

-- The end --