Exam Martingales and Brownian Motion (WI 4430).

27th of January 2025, 9:00-12:00.

No books or notes allowed.

Responsible of the course: Prof. Dr. F. Redig

Second reader exam: Drs. Berend van Tol

- a) The exam consists of two theory questions, each on 10 points, followed by exercises. The exercises consist of 10 small questions each on 2 points.
- b) The end score is computed as explained on the bright space page. Course grade is the final exam grade f or 0.6f + 0.4h (with h average homework grade), whichever is larger, provided $f \ge 5$.

Theory Questions.

- 1) (a) Give the definition of a martingale (2 points).
 - $\sqrt{}$ b) State and prove the Doob-Meyer decomposition theorem (8 points).
- 2) (a) Derive the formula for the quadratic variation of Brownian motion (4 points).
 - b) Prove that for every t > 0, with probability one Brownian motion is not differentiable at t. (6 points)

accept tigue innersion

Exercises

3) Let $Y_i, i=1,2,\ldots$ denote i.i.d. random variables which are Poisson distributed with parameter $\mu\in(0,\infty)$, i.e., for $n=0,1,2,\ldots$, $\mathbb{P}(Y_i=n)=e^{-\mu}\frac{\mu^n}{n!}$. We denote by $\mathscr{F}_n=\sigma\{Y_1,\ldots,Y_n\}$ the natural filtration, $S_0=0$ and $S_n=\sum_{i=1}^n Y_i$ for $n\geq 1$. You are allowed to use that if Y is

Poisson distributed with parameter μ , then for $a \in \mathbb{R}$, $\mathbb{E}(e^{aY}) = e^{\mu(e^a - 1)}$ and $\mathbb{E}(Y) = \text{Var}(Y) = \mu$.

- And $\mathbb{E}(T) = \text{Var}(T) = \mu$.

 By a) Compute $\mathbb{E}(e^{\lambda(X_1 + X_2)} | X_1)$ (with $\lambda \in \mathbb{R}$).
- \mathcal{R} c) Let $\lambda > 0$. Define $X_n = e^{\lambda S_n n(\mu(e^{\lambda} 1))}$. Prove that $\{X_n, n \in \mathbb{N}\}$ is a martingale w.r.t. the natural filtration.
- Temptowww d) Prove that the martingale from item c) converges almost surely and compute the limit.
 - 4) Let Y_i , i = 1, 2, ... denote i.i.d. random variables taking the values ± 1 with probabilities $\mathbb{P}(Y_i = 1) = p$, $\mathbb{P}(Y_i = -1) = q$ with 1/2 andp+q=1. We denote by $\mathscr{F}_n=\sigma\{Y_1,\ldots,Y_n\}$ the natural filtration, put $S_0 = 0$ and $S_n = \sum_{i=1}^n Y_i$ for $n \ge 1$.
 - \mathcal{T}_n a) Define $X_n = \left(\frac{q}{p}\right)^{S_n}$. Prove that $\{X_n, n \in \mathbb{N}\}$ is a martingale w.r.t. the natural filtration.
 - Tempkerenb) Define for $a \in \mathbb{N}, a \geq 1, T_a = \inf\{k \in \mathbb{N} : S_k = a\}$ the hitting time of a. Let $\lambda \in \mathbb{R}$. Use the martingale

$$X_{\lambda,n} := e^{\lambda S_n - n \log(pe^{\lambda} + qe^{-\lambda})}$$

for an appropriate value of λ in order to prove that for 0 < s < 1we have

$$\mathbb{E}(s^{T_a}) = \left(\frac{1 - \sqrt{1 - 4pqs^2}}{2qs}\right)^a$$

You do not have to prove that $X_{\lambda,n}$ is a martingale, neither do you have to prove that T_a is a finite stopping time. However, justify exchange of expectations and limits if you use it.

 $\langle C \rangle$ Let $\{b_n, n \in \mathbb{N}\}$ denote a sequence of real numbers. Determine the necessary and sufficient condition on this sequence which implies that the martingale

$$M_n := \sum_{i=1}^n (Y_i - (p-q))b_i$$

converges in L^2 . You do not have to show that M_n is a martingale.

5) Let $\{W(t), t \geq 0\}$ denote Brownian motion, and $\mathscr{F}_t = \sigma\{W(s) : 0 \leq s \leq t\}$ its associated natural filtration. You are allowed to use that if X is normally distributed with expectation μ and variance σ^2 , then

$$\mathbb{E}(e^{\lambda X}) = e^{\lambda \mu} e^{\frac{\lambda^2 \sigma^2}{2}}.$$

- ? a) Compute, for 0 < s < t and $\lambda \in \mathbb{R}$, the conditional expectation $\mathbb{E}(e^{\lambda W(s)}|W(t))$.
- \oint b) Define $p(x,t) = \frac{1}{\sqrt{t}}e^{x^2/2t}$. Define for a > 0, and t > 0

$$X_a(t) := p(W(t), a + t).$$

Prove that $\{X_a(t), t \geq 0\}$ is a martingale w.r.t. the natural filtration. Hint: you are allowed to use

$$p(x,t) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{\theta x - \frac{1}{2}\theta^2 t} d\theta$$

When you verify that $X_a(t)$ is a martingale, you are allowed to interchange conditional expectation with the integral over θ without further justification.

c) In this exercise you are allowed to use that if $\{M(t), t \geq 0\}$ is a non-negative martingale w.r.t. the natural filtration, then we have the maximal inequality

$$\mathbb{P}(\max_{0 \le s \le T} M(s) > K) \le \frac{1}{K} \mathbb{E}(M_T)$$

for all T > 0, K > 0. Use this fact together with the martingale from item c) to prove that, for a > 0

$$\mathbb{P}\left(|W(t)| \ge \sqrt{2(a+t)\log\sqrt{a+t}}, \text{ for some } t > 0\right) \le \frac{1}{\sqrt{a}}$$