Exam IN2405-A

Thursday January 27th 2011

Question 1

(a)

$$x(t) = (6 + 3\cos(2\pi 80t))\cos(2\pi 30t)$$

$$= 3(e^{2\pi 30tj} + e^{-2\pi 30tj}) + \frac{3}{4}(e^{(2\pi 110t)j} + e^{-2\pi 110tj})$$

$$+ \frac{3}{4}(e^{2\pi 50tj} + e^{-(2\pi 50t)j})$$

$$= 6\cos(2\pi 30t) + \frac{3}{2}\cos(2\pi 110t) + \frac{3}{2}\cos(2\pi 50t)$$
(2)

- (b) This follows from (a)
- (c) The greatest common divisor of the three frequency components is f = 10 Hz. The signal is therefore periodic with period T = 1/10.
- (d) $f_s \ge 2f_{max} = 220 \text{ Hz}.$
- (e) Since $f_s > 2f_{max}$ we can conclude that y(t) = x(t).
- (f) Let $x_1(t) = 6\cos(2\pi 30t)$, $x_2(t) = \frac{3}{2}\cos(2\pi 110t)$ and $x_3(t) = \frac{3}{2}\cos(2\pi 50t)$. Since $f_s = 70$ Hz, we have that $y_1(t) = x_1(t)$. Further we have

$$x_2[n] = \frac{3}{2}\cos(2\pi 110n/70) = \cos(2\pi n\frac{3}{7})$$

so that $y_2(t) = \frac{3}{2}\cos(2\pi 30t)$. Also,

$$x_3[n] = \frac{3}{2}\cos(2\pi 50n/70) = \frac{3}{2}\cos(-2\pi 2n/7) = \frac{3}{2}\cos(2\pi 2n/7)$$

so that $y_3(t) = \frac{3}{2}\cos(2\pi 20t)$. Hence, $y(t) = 6\cos(2\pi 30t) + \frac{3}{2}\cos(2\pi 30t) + \frac{3}{2}\cos(2\pi 20t)$

Question 2

- (a) The filter coefficients are $\{b_{-1}, b_0, b_1\} = \{2, 4, 2\}$. Using $H(e^{j\hat{\omega}}) = \sum_{k=-1}^{1} b_k e^{jk\hat{\omega}}$ we get $H(e^{j\hat{\omega}}) = 4 + 2e^{-j\hat{\omega}} + 2e^{j\hat{\omega}} = (4 + 4\cos(\hat{\omega}))$.
- (b) $H(e^{j\hat{\omega}})$ is always 2π periodic. Proof: $H(e^{j\hat{\omega}+2\pi})=(4+4\cos(\hat{\omega}+2\pi))=(4+4\cos(\hat{\omega}))=H(e^{j\hat{\omega}})$
- (c) $H(e^{j\hat{\omega}}) = 0 = > (4 + 4\cos(\hat{\omega})) = 0 = > \hat{\omega} = \pi + 2k\pi$ with k an integer.

(d)

 $-3\pi/4$

 $-\pi/2$

(e) At $\hat{\omega} = \pi$ the reponse is zero. Therefore, $y_1[n] = 0$. At $\hat{\omega} = 0$ $H(e^{j\hat{\omega}}) = 8$. Therefore, $y_2[n] = 8x_2[n]$. At $\hat{\omega} = \pi/2$ $H(e^{j\hat{\omega}}) = 4$. Therefore, $y_3[n] = 4x_3[n]$. The output is thus $y[n] = -16x_2[n] + 12x_3[n]$.

 $\pi/4$

 $3\pi/4$

Question 3

(a) $H_1(z) = \frac{1}{4}(1+z^{-1}+z^{-2}+z^{-3})$

(b) Making use of the geometric series expansion we get

$$H_1(z) = \frac{1}{4} \left(\frac{z^4 - 1}{z^4 - z^3} \right)$$

Zeros: $(z^4-1)=0\Longrightarrow$ at $z=1,\,z=e^{j\pi/2},$ at $z=e^{j\pi}$ and $z=e^{-j\pi/2}.$ Poles: $(z^4-z^3)=0\Longrightarrow 3$ x at z=0 and at z=1. The pole and zero at z=1 cancel, which means that we have a zero at $z=e^{j\pi/2},$ at $z=e^{j\pi}$ and $z=e^{-j\pi/2},$ and 3 poles at z=0.

(c)
$$H_1(e^{j\hat{\omega}}) = \frac{1}{4} \frac{\sin(2\hat{\omega})}{\sin(\hat{\omega}/2)} e^{-j\hat{\omega}3/2}$$

(e)
$$H_2((e^{j\hat{\omega}})) = 4 - 4e^{-j\hat{\omega}} = 4e^{-j\hat{\omega}/2}\frac{2j}{2j}(e^{j\hat{\omega}/2} - e^{-j\hat{\omega}/2}) = 8e^{-j\hat{\omega}/2 + \frac{\pi}{2}j}\sin(\hat{\omega}/2)$$

(f)
$$H(e^{j\hat{\omega}}) = 2\sin(2\hat{\omega})e^{-2j\hat{\omega} + \frac{\pi}{2}j}$$

(g) This cascade system has zeros for $\hat{\omega} = \frac{\pi k}{2}$. Therefore, the output is y[n] = 0

Question 4

(a)
$$H(z) = \frac{1-2z^{-1}}{1+0.5z^{-1}} = \frac{z-2}{z+0.5}$$

(b) zeros: z=2. Poles: z=-0.5. The system is stable. The poles are inside the unit circle and the system is causal.

(c)
$$H(z) = \frac{1-2z^{-1}}{1+0.5z^{-1}} = \underbrace{\frac{1}{1+0.5z^{-1}}}_{part1} \underbrace{-\frac{2z^{-1}}{1+0.5z^{-1}}}_{part2}$$

Using the table of z-transforms it follows for the inverse z-transform of part 1 is $h_1[n] = (-0.5)^n u[n]$ and of part 2 is $h_2[n] = -2(-0.5)^{(n-1)} u[n-1]$. The total impulse response is $h[n] = (-0.5)^n u[n] - 2(-0.5)^{(n-1)} u[n-1]$.

(d) Using the table of z-transform pairs we find $X(z) = \frac{5}{1 - e^{j\pi/2}z^{-1}}$.

(e)
$$Y(z) = \frac{1-2z^{-1}}{1+0.5z^{-1}} \frac{5}{1-e^{j\pi/2}z^{-1}}$$

(f) Partial fraction expansion:

$$Y(z) = \frac{A}{1 + 0.5z^{-1}} + \frac{B}{1 - e^{j\pi/2}z^{-1}}$$

$$A = \frac{25}{1 + 2e^{j\pi/2}}$$

$$B = \frac{5 - 10e^{-j\pi/2}}{1 + 0.5e^{-j\pi/2}}$$

Using the inverse z-transform of each term we get

$$y[n] = \underbrace{A(-0.5)^n u[n]}_{transient} + \underbrace{Be^{j\pi n/2} u[n]}_{steady\ state}$$