
MACHAZINE

 CONTAINING:
Current AffAirs | AssoCiAtion | Computer sCienCe | mAthemAtiCs | misCellAneous

THE CHILLING ADVENTURES OF:

The ski trip

DREAMTEAM AS A MATH STUDENT:

Solar Boat
STUDY IN THE USA, STOCKHOLM AND SINGAPORE:

Minor Abroad

DELFT STUDENT E-SPORTS ASSOCIATION:

Esports in Delft

Volume 23 - Issue 3
May 2019

a passion for technology

Prodrive Technologies puzzle - Win a drone!

Puzzle
Suppose you have a list of n integers, each integer is a number from 1 to n, and each number appears exactly once
in the list.
Take the value of the first value of the list, let’s call it k, and reverse the first k elements in the list. Continue this proce-
dure until the first value of the list is equal to 1.
The goal is to maximize the number of reversals you will do.

For example, assume the list is arranged as follows (first value of the list is to the left):
2, 5, 4, 1, 3

After swapping the first two elements, continue, resulting in a total of 6 reversals.
5, 2, 4, 1, 3
3, 1, 4, 2, 5
4, 1, 3, 2, 5
2, 3, 1, 4, 5
3, 2, 1, 4, 5
1, 2, 3, 4, 5

For this puzzle the values of n are 5, 10, .., 125.
For each value of n, submit the order of the list gives the highest number of reversals.

Scoring
For each n, you will get a subscore between 0 and 1. The subscore is calculated by dividing your best score by the
best score of any contestant.

Assume you are the first to submit a solution for n=10 with a score of 30. Since this is the only submission for n=10,
it is also the best score currently submitted for n=10, resulting in a subscore of 1.0 points.

Another contestant submits a solution for n=10 with a score of 34. Now your subscore is reduced to 0.88 (=30 / 34).

Your total score is the sum of all of your subscores. This means your total score is between 0 and 25. The goal is to
maximize your total score. Note that your total score is not fixed! As other people submit solutions your total score
might drop, so keep an eye on the submission page.

Submitting
You can submit your list as a comma separated list of the integers.

You can submit multiple solution at once, by separating them with a new line. A newer solution for a value of n re-
places the older solution for that n, but only when it is better, i.e. when the number of reversals is larger. This means
that in a new submission you only need to submit the solutions for n where your solution is better than before.

To see the current standing, deadline and to submit your solution,
go to: https://prodrive-technologies.com/christiaanhuygens

Prize
The two best submissions win a drone, among the other participants a third
drone will be raffled!

Global presence
The Netherlands | USA | Germany

China | Israel

prodrive-technologies.com
jobs@prodrive-technologies.com

Editorial

MACHAZINE

MACHAZINE
is a publication of

W.I.S.V. ‘Christiaan Huygens’

Chief Editor
Eva Slingerland, Marjolein Leegwater

Editorial staff

Daniël van Gelder, Kilian Buis, Willemijn

Tutuarima, Wouter Versteegh

Art Directors

Louise Leibbrandt, Jeroen Nelen

Contact address
Mekelweg 4, 2628 CD Delft

E: machazine@ch.tudelft.nl

T: 015-2782532

Concept and design
G2O Kesteren

Publisher
BladNL

Cover
https://www.pexels.com/photo/beautiful-be-

auty-bloom-blooming-531299/

Cooperating on this issue:
Willemijn Tutuarima, Jari de Keijzer, Fred

Vermolen, Wouter Versteegh, Jan-Willem van

Leeuwen, Karel Bouwmeester, Jolijn van Delft,

Pravesha Ramsundersingh, Gijs de Jong, Timo

van Asten, Joey van der Krogt, Vera Martens,

Louise Leibbrandt, Kilian Buis, Daniël van

Gelder, Eva Slingerland, Marjolein Leegwater

Terms and Conditions
The MaCHazine-committee and the Board

are responsible for the content within this

MaCHazine, in such terms that the opinion

of a writer is not (necessarily) a reflection of

the opinion of the committee or association.

All rights reserved. No part of this publication

may be reproduced, stored in a (retrieval)

system or transmitted in any form or any

means, electronic, mechanical, photocopying,

recording, scanning or otherwise, without the

prior written permission of the committee or

association.

Advertiser index
Prodrive Inside front cover

ASML 8

Technolution 16-17

TNO 28

Willemijn Tutuarima
The end of quarter three is probably one of the most

important periods for students at the TU Delft. People

start planning what they want to do next year and in

the upcoming summer. It is especially for freshmen a

very stressful but also hopeful time, because they are

working hard to get a positive binding recommenda-

tion (BSA). I remember being really stressed at the

end of my first year, but I can tell you that the stress

levels do get better after you get your positive BSA.

This year my calendar is more filled with social events

than with studying all day every day. This is one of

the things I really like about studying in Delft: one

moment you can focus on the future and on getting

more educated in the field of your choice and another

moment you can choose to relax more and to enjoy

being a student.

Another change that the end of quarter three brings,

is the change in the seasons. Winter is officially over and the sun has

come out, which leads to crowded streets. Also, the campus of the TU

Delft is filled with students who like to enjoy their lunch in de sun. But it is still spring and not summer,

which you realize every time you almost get blown of your bike on your way to the university and in some

of these situations gloves are still necessary.

At CH there is still a lot of things happening towards the end of the year. The Dies week took place, where

the Dies committee put together an entire week with activities from a pub quiz to a lunch lecture from a

magician. This week is very special because all members can get to know each other better and have a little

break from all the studying. I think these sorts of weeks really make studying in the Netherlands different

from studying in other places in the world because everyone is trying to get people together.

A big part of the MaCHazine consists of articles about technology, whether it is mathematics or computer

science related. This is logical, because the MaCHazine is meant for students, teachers and alumni of these

studies. One article, the science trends, is not only about mathematics and computer science related topics,

but can be about any new technology that is in the news currently. What I noticed is that, although these

separate topics are not always directly related to our own faculty, the mathematics and computer science

are always used in some way. Mathematics and computer science is used everywhere and in all studies, even

if it is just to calculate statistics or remaking some molecules. This really shows that a computer science or

mathematics student can go into any field of research.

I would like to wish all freshmen good luck with their last courses and getting their positive BSA. Hopefully

the MaCHazine can bring you some enthusiasm and motivation again by showing you the possibilities of

your future! If you have any questions or suggestions for the MaCHazine, I encourage you to send a mail to

machazine@ch.tudelft.nl. We’re always glad to receive input from our readers.

Table of Contents

MACHAZINE

Current Affairs
From the Board 4

TU Delft News 6

Do not insult the ‘prophet’! 7

Association
Department Symposium 10

Winetasting by the MeisCie 11

The CHilling adventures of the ski trip 15

Party by the SjaarCie 16

Computer Science
RMD: Design of cryptographic hash function using Rubik’s Cubes 18

What a BEP really teaches you: Discussion, Failure and Success 21

Mathematics
Erasure Coding for Storage of Data in the Cloud 24

Bridging minor to Computer Science 26

Dreamteam as an EEMCS student 27

Miscellaneous
Science Trends 30

Historical Person: David Hilbert 31

Minor abroad 32

Computer Science puzzle 34

Mathematical Puzzle 35

DSEA - Esports in Delft 36

Volume 23 • Issue 3 • May 2019
Bo

ar
d

62

Dear reader,

Most computers science students have heard of it: the halting problem.

The halting problem is the problem of determining whether an arbitrary

program with a certain input will stop running over time or not. In other

words, halt. Unfortunately, I did not solve the halting problem, but what

I did solve, or learn this year, is how to cope with tasks that never seem

to be finished.

In Board 62, I fulfill the position of Public Relations Affairs and on top of that

I also fulfill the position of IT affairs at ‘De Delftse Bedrijvendagen’ or DDB

for short. My main task within CH is leading the Board of Acquisitioners or

BoA for short. Together with a team of four board members we form BoA and

with BoA we have a lot of contact with companies with whom we cooperate to

make all our events possible (think of lunch lectures, data sets for HackDelft,

the company diner, etc.). As IT affairs, my main task is to keep track of all the

developments regarding the platform (website) of DDB. The platform has been

an ongoing project for about 2 years now and has changed a lot in these 2

years. If you participated in DDB you have used the platform too, so feedback

is always welcome!

In both of my main tasks in both the Boards I got some good ideas from

my predecessor to start working on. Many of those ideas were ideas that he

thought of during his year as a Board member. For instance, with BoA we

wanted to have a lot more graduation projects on the CH website. This is an

idea that BoA is executing right now. For the DDB platform, I got a whole list

of ideas that could be implemented. All these ideas were already implemented

in 2018. However, right now I have a list that is twice the size of the original

list of features. How did this happen?

While going through a year as a Board member, you will go through a transition

of first executing all the tasks at hand to start trying to change something in

the association. Many new ideas to change something will come when working

on a certain topic a lot. That is the reason I now have an even longer list of

ideas I would like to change this year, when the year is already coming to an

end.

The problem that arises from all these ideas is that you have limited time to

execute them and that you will get stressed trying to execute them all. The

point I am trying to make is that prioritizing your ideas is important. It is

better to execute a couple of ideas in a very neat manner than to execute all

your ideas while cutting corners. This may seem logical but choosing between

one idea or another can be difficult.

To conclude, halfway through the year I came to realize that prioritizing your

goals can be difficult but when it is done it will take a load of your shoulders.

My message to you is that it is important to keep thinking of new ideas and to

write those down. However, is it also important to understand that you can’t

execute an infinite amount of ideas. Prioritizing them and maybe handing over

very good ideas to your successor is a good way to handle your workload. I

can now conclude that CH is a none halting association, it keeps changing in

a positive way every year!

HuygsCHe!

From the Board
Jari de Keijzer

Public Relations

4

Current Affairs

6

Volume 23 • Issue 3 • May 2019
Cu

rr
en

t
af

fa
ir

s

The Delft University of Technology is the biggest and oldest public

technical university in the Netherlands, established by King Willem II

on January 8th, 1842. But what is currently happening in and around the

TU Delft? This article will list the most important events of the recent

months.

Stricter screening of Iranian students and scientists at TU Delft
The Dutch cabinet has decided to screen Iranian students and scientists in a

stricter manner with immediate effect. This decision is made to prevent that

specific knowledge gained in the Netherlands is used for the development of

weapons in Iran. In a letter written by Minister of Foreign Affairs Stef Blok to

the House of Representatives (Tweede Kamer), he writes that a “recent case”

was the reason to screen students and scientists from Iran with immediate

effect. Sources have reported to the NOS that this recent case is an Iranian

student who could be studying here to learn about making and launching

missiles that could benefit the Iranian Ballistic Rocket Program.

The letter also contained in broad lines what this means for Iranian students,

scientists and staff at the TU Delft. A taskforce will write a test that will check

Iranian people who are active in “sensitive science departments” if they are

related to Iranian rocket programs. Currently there are already foreign stu-

dents being screened whether they could be related with North Korea, which is

recorded in the Sanction Regulation North Korea 2017. This regulation applies

to five TU Delft programs, and the Delft rocket project “Stratos”. The cabinet

now wants to extend this screening policy to more countries, in the first place

Iran, but perhaps also other countries who are perceived as risky.It has already

been tried in the past to reject Iranian students from particular programs, but

the judicial court prevented that. This applied to master programs in nuclear

physics and chemistry. However, according to the cabinet there are now enough

reasons to enforce a stricter policy regarding Iranian students and scientists.

Listening to quantum radio
Researchers at the TU Delft have created a quantum circuit that allows them to

listen to the weakest radio signal allowed by quantum mechanics. This could

possibly open the door to future applications such as radio astronomy and

quantum MRI scans.

We have all been annoyed by weak radio signals before: your favorite song in

the car turning to noise, being too far from the wifi router to watch a series

or too far from your Bluetooth speaker to play your music. Our usual solution

is to increase the signal strength, such as fine tuning your radio or moving

within the room to pick up a better signal. However what if we could listen

more carefully?

In quantum mechanics, energy comes in little chunks called “quanta”. This

means the following: if I want to add energy to something, I can only increase

the energy one “quantum step” at the time. Quantum mechanics states that I

cannot raise the energy with half a “quantum step”, so it is the smallest energy

chunk possible. These quantum steps are usually too small to notice. Until

recently this was also true for radio waves, but the circuit that the TU Delft

built can actually detect these chunks in radio frequency signals. This means

that we can sense radio waves at the quantum level. If this gets developed

further, it could mean that you won’t have to worry about weak wifi ever again!

Delft worst city for student rooms
Where Delft was the best city for student rooms in 2017, in this year’s ranking

made by the National Student Union Delft (LSVb) it is ranked the worst.

Enschede is the best city. Enschede was awarded last week in the second

edition of the city student housing contest. This contest is held to draw

attention to the shortage of rooms for students. Municipalities who combat

this problem with smart policy are rewarded. The thirteen cities with the most

students are judged based on their student housing policy. Do they collaborate

with housing corporations, and are individuals able to rent out their house to

students? Are students being provided enough information about housing,

projects and new initiatives? Based on questions like these, the LSVb makes

a ranking. Enschede came out as the best because “despite the low need for

rooms, the city still makes an effort to make housing as affordable and safe as

possible”. They work closely with housing corporations and give all students

an equal chance of a room.

Delft being ranked as the lowest comes a bit as a surprise; in the first edition

Delft was ranked the best, so what changed? The main reason is that the policy

regarding the houses itself changed. It is way harder now to buy a house and

make it into a house for students. This used to be a good way for students to

get a room in Delft. The municipality doesn’t understand the ranking. They

state that student housing is a top priority for the city. They understand that

the low ranking arises from the policy change, but they state that the LSVb

didn’t interpret the reason for that correctly. The LSVb stated in their research

that noise and nuisance are reasons for the policy change, to prevent students

from buying a house in non-student areas and annoy other civilians. However,

the municipality states that they changed the policy to combat an imbalance

in the local housing market, since particular areas were getting more crowded

than intended. The areas specifically mentioned are the Binnenstad, Wippolder

and Westerkwartier. The local student union VSSD is making an effort to revert

this policy change.

References:
[1] https://nos.nl/artikel/2275965-kabinet-verscherpt-toezicht-op-iraanse-studenten.

html

[2]https://www.delta.tudelft.nl/article/strenger-toezicht-op-iraanse-studen-

ten-en-wetenschappers

[3] https://www.delta.tudelft.nl/article/delft-dit-jaar-slechtste-studentenkamerstad

[4] https://www.tudelft.nl/en/2019/tnw/listening-to-quantum-radio/

TU Delft News
Wouter Versteegh, Editorial Staff MaCHazine

Volume 23 • Issue 3 • May 2019
Current Affairs

7

Do not insult the ’prophet’!

Fred Vermolen

In February 2019, a teacher at a VMBO-school was suspended because of

allegations that he insulted ’prophet’1 Muhammad. Is this a wishful

situation in a secular country like the Netherlands?

February 2019, a teacher at the Hoofdvaart College in Hoofddorp has been
suspended for an indefinite period because he would have insulted ’prophet’
Muhammad [1]. His students issued a complaint about him insulting ’prophet’
Muhammad to the director. The teacher said that he heard one of his students
say that her mother found him (the teacher) ’haram’ (’forbidden by Islamic
law’, or in the current context ’dirty’). The student said this to one of her
fellow students. The teacher spoke to her about this matter and suddenly the
teacher found himself surrounded by a group of students, who were shouting
that he had insulted the ’prophet’. Therefore, a number of students issued a
complaint to the director. The director decided to ’temporarily release the
teacher from duties’, which in ordinary English reads as that the teacher was
suspended. The 49 years old teacher received a letter from his employer saying
that ’you have said that Muhammad married an eight-year-old girl and that
if a grown up man marries an eight-year-old girl in the Netherlands, then he
is classified as a pedophile’. The teacher denies all accusations. He claims
that he has never said this and that he did not insult the ’prophet’. He said
that he had even never mentioned the ’prophet’ during his conversations with
his students. The teacher fights his suspension at the disputes committee of
educational affairs. The school is not available for any comments.

In my opinion, this is a very serious matter from different angles. First of all,
in my opinion, everyone’s religious beliefs should be respected. Hence, if the
lecturer has insulted the ’prophet’ then his students may feel offended. In
this sense, it is a matter of very bad taste to offend the students by saying
that Muhammad was a pedophile.

There is an enormous variety of sources about Muhammad’s life. One of these
sources is the Quran, which is regarded as the holy scriptures by the Muslim
community. According to [2], the traditional scriptures say that Muhammad
’consummated’ the marriage with Aisha when she was nine or ten years old.
Modern Islamic scholars estimate Aisha much older than this, which changes
the story. To reflect on this, one should bear in mind that during the time
when Muhammad was alive, marriages were based on different principles in
the Middle East from what is considered as common in nowadays Western
societies. Marriage was not only aimed at allowing sexual intercourse or at
getting children. A man could also marry a (young) woman because he wanted
to take care of her, for instance if she was an orphan or if she was divorced and
therefore had no other means to sustain her life. Sex was not necessarily a part
of marriage in these days. In this light, despite Muhammad marrying young
Aisha, it would be inappropriate to draw the conclusion that Muhammad was
a pedophile. Of course, currently, it is not allowed to marry a girl of around
ten years old in the Netherlands, see [3], and there are good reasons for this!

Another serious matter concerns the credibility of the students. The students
are at a VMBO institution, which implies that their age is normally in the range

1I have put the word prophet between quotes because I am not a Muslim.

of 12–16 years old (if they did not fail any classes). To what extent should
a school director believe a group of hysterically shouting students (which I
saw in a footage, see [4])? Should not the director have had a chat with
his teacher? Was not the teacher hired for his credibility? If I would have
a dispute with a policeman, then, in general the judge would believe the
policeman, and not me. Should not the director have called the students and
teacher and should he not have listened to their stories simultaneously? In
my opinion, the director should have done this. By acting the way he did, the
teacher has been maneuvered into a vulnerable position. If the students do
not like a teacher, then they can issue various false accusations to the board
or to the director. As a result of these claims, a teacher can be suspended or
sacked.
On the other hand, the VMBO school in Hoofddorp is not an Islamic school,
hence ’prophet’ Muhammad is not a holy figure according to the school’s philos-
ophy. In that case, why should a school defend a symbol that is hypothetical
to them, like Muhammad, so fiercely? The student said to a fellow student
that the teacher was ’haram’ according to the student’s mother. Is not this
insulting to the teacher? Does the teacher not have the right to feel offended?
Another thing that worries me in this matter is that this incident feeds the
powers at the extreme sides of the political spectrum in the Netherlands. Some
politicians will see a confirmation of the statement that the Netherlands are
heading towards a more Islamic society. People who vote for such parties
will be strengthened in their belief that Islam is taking over and that we
are heading towards Sharia legislation. Moreover, many other people argue
that Jesus Christ has also been insulted by comedians, movie-makers (think
of Monty Python’s Life of Brian), so why is it wrong to insult a fictitious
character like Muhammad? In these people’s perspective, one argues why is it
not allowed to insult Muslims, whereas it is acceptable to offend Christians?
As a final remark, I would like to argue that there seems to be a shortage
on teachers in the Netherlands, in particular, nowadays teachers seem to be
reluctant to teach at VMBO-schools. If teachers are treated like this, then
their authority is jeopardized, and then I am not surprised that nobody wants
to teach at VMBO-schools. This will be worse in the future.
This tale will only have losers because of the extremely poor job of the director.
The director should have believed his teacher and if the circumstances are such
that he cannot believe the teacher, then, he should have organized a meeting
where the students, their parents and the teacher are invited. It is a silly
world. I would like to say that we are all humans with our own beliefs and
non-beliefs, so let us not fight about these beliefs, but let us respect each
other. If someone believes in Allah and Muhammad, it is fine with me, if
someone does not believe in the existence of God, or in a Spaghetti-monster,
it is fine with me too. Live and let live.
Well, I have bored you with all this. It is time for a couple of pints. Skål!

References
[1] https://www.nrc.nl/nieuws/2019/03/01/schorsing-leraar-om-profeet-mohammed-is-verkeerd-

signaal-a3877353

[2] https://en.wikipedia.org/wiki/Muhammad

[3] http://www.wetrecht.nl/seks-met-minderjarigen/

[4] https://www.geenstijl.nl/5146469/powned-over-pedo-mohammed-in-hoofddorp/

Do not insult the ‘prophet’!
Fred Vermolen, Department Numerical Analysis

8

Volume 23 • Issue 3 • May 2019
Ad

ve
rt

or
ia

l

Software development skills are in demand, as any quick scan of online

job boards will confirm. But the people doing the hiring have an impor-

tant piece of advice: knowing how to code isn’t enough for long-term

career success. The developer skill set is changing.

 “Software engineering is about abstraction and structure,” says Jan Friso

Groote, professor in Computer Science at the Eindhoven University of Techno-

logy (TU/e). “The real problem of software is that it is so immensely complex

that if it is not well structured, it becomes unmaintainable.” As a result, the

most important skill of a software developer isn’t writing code and testing

it until the bugs are quashed. It is understanding the essence of a problem

and building a structured, reliable, extendable and maintainable approach for

solving it.

For development teams who have taken this approach to its logical conclusion,

it means that software engineers write very little traditional code. They spend

most of their time working in abstract modelling languages, specifying the

behavior of a system. Formal verification tools allow those teams to be confi-

dent that their solution is complete and error-free, and the code itself is then

automatically generated.

With such a model-driven engineering (MDE) approach, a team at ASML recently

replaced half a million lines of code that had been built the conventional way.

“When we made this change to our software, it was a challenging period and a

lot of energy was needed from our software engineers,” said David van Beek,

who leads a group of software engineers at ASML. “We really grew as a group

and as a department. We continue to grow now, and we need developers with

this energy and drive to ensure we continue to produce a clean and extendable

design in the years ahead.”

It’s not surprising that companies like ASML are embracing model-driven

software development. ASML makes equipment for chip manufacturing. All of

the world’s leading makers of processors and memory chips are using ASML’s

lithography systems to create the nanometer-sized electric circuits found on

modern chips. These are some of the most sophisticated machines ever built,

so the demands for the software that runs them are high.

Rogier Wester, manager of the Lithography Systems Software Architecture

group at ASML, said he looks for candidates who demonstrate abstraction

skills, who understand the essence of the problem and are still able to create

simple solutions. This is because complex solutions do not usually work and

even if issues do not crop up immediately, bugs will still appear when custo-

mers start to use the product.

This requires developers to think in a very different way. “Think about what

will go wrong. Divide and conquer. Use models for abstraction and conciseness.

Use appropriate tools, that allow you to refactor and change with confidence,”

Wester said. “We need very skilled software designers and, in my honest opi-

nion, we see the challenge for the universities to offer an integral computer

science education on software architecture and design, abstract modeling, and

formal specification and verification,” he added.

Know more about Software at ASML: workingatasml.com/sw

Knowing how to code is not
enough for career success
ASML

Association

10

Volume 23 • Issue 3 • May 2019
As

so
ci

at
io

n
Volume 23 • Issue 3 • May 2019

The VerdiepCie is a committee at Christiaan Huygens which aims to

provide in-depth information about a multitude of things. It consists

of five students and one board member of CH. The five students take

up the roles of Chairman, Secretary, Treasurer, Mathematics Affairs and

Computer Science Affairs.

Firstly, we organized a Department Symposium for Computer Science (CS)

and Applied Mathematics (AM), about both the bachelor thesis as well as the

master. Initially we wanted to schedule these both on one day, so with the

AM and the CS schedules parallel. Then we would have the morning for talks

about the bachelor thesis, and the afternoon would be filled with master infor-

mation. However, scheduling this was impossible, which is why we resorted to

spreading out our schedule over multiple days.

Everything was scheduled in quarter 3 of the academic year, so we held the

AM bachelor thesis talks on Tuesday the 12th of February in the morning. Two

days later, on Thursday the 14th , we had scheduled both the AM and the CS

master talks to start in the afternoon. Before that, during the lunchbreak,

there was a special presentation for students who did the double bachelor

Applied Mathematics-Applied Physics programme, on what they had to do

for their bachelor thesis. One week later, on Friday the 22nd of February, the

CS bachelor thesis talks, which were held in the afternoon, concluded the

Department Symposium.

However, before we could even start thinking of what kind of talks we wanted

and how we wanted to schedule them, we had to look at what these study

programs had to offer. We looked at all the different departments of these

studies and tried to figure out how many speakers we needed. We also drew

up a plan on what we wanted to offer during these talks. Did we want to offer

coffee and tea? Did we maybe also want some cookies, or fruit? Were we going

to provide lunch for all the participants? All of these decisions had to be made

before continuing.

After a lot of talking back and forth, budgeting, and planning, we figured out

we could offer lunches before the afternoon talks, which were the AM master

and the CS master parts as well as the CS bachelor thesis part. We also decided

on fruit, cookies, and drinks in the breaks between talks.

Students had to enrol for the parts they were interested in, so we could see

how much lunch and drinks and such we had to provide, as well as knowing

just how many people would even show up. Initially the enrolment went quite

slowly, thus we had to promote more than we already had. We had already used

a banner which was strategically placed at the entrance of EEMCS, we had sent

texts to our fellow students, we had sent Brightspace reminders, and so on.

After increasing the amount of promotion we put out, more people started

enrolling, as we had hoped.

Eventually we had a fairly high enrolment, about 70 for the AM bachelor thesis

talks, 30 for the double bachelor thesis, 50 and 70 for the AM and CS master

information talks respectively, and 80 for the CS bachelor thesis talks. And

this turned out to be quite a good metric to check how many people would

show up, except for the CS bachelor thesis talk. With an enrolment of about

80, we decided to order 100 sandwiches, where the extra sandwiches were for

ourselves and the CH board, but only about 20 people showed up. We ended up

having to throw out quite a lot of sandwiches, which is, of course, very sad.

But this is all reflection. In order to plan the day, we had to mail several

lecturers and students. From each department we asked one lecturer to talk

about what their department did, what kind of research was done there, and,

depending on whether it was a bachelor thesis or master talk, we asked them

to explain what a bachelor project would entail, or what a master programme

within their department would look like.

Luckily for us, this all worked like clockwork. All of the departments had some-

one represent them, and, nearly, all of the talks were very informative as well.

All in all, we can happily conclude that the department symposium was a huge

success and we thoroughly enjoyed preparing it all. At first it seemed a very

monumental task, but as we tackled all the issues in a very strategic order, we

ended up having quite a lot of fun. The next thing on our agenda is preparing a

lunch lecture, and we hope it will be even better than the symposium!

Department Symposium
Jan-Willem van Leeuwen, Secretary of VerdiepCie committee

11

Winetasting by the MeisCie
Jolijn van Delft, Chairman of MeisCie committee

Volume 23 • Issue 3 • May 2019
Association

In February, the first MeisCie activity took place. On a Wednesday

evening just after dinner, around 30 girls gathered to attend a wine

tasting in the /Pub. Some were completely refreshed after the holiday,

others were still recovering from the skiing trip. As the chairman of the

MeisCie 2018-2019, I’ve been asked to write an article to tell something

about this year’s MeisCie committee.

Before you’ll get to read about how great of a success our first activity was,

let us first shortly introduce ourselves. Just as previous year’s committee,

the MeisCie committee consists of girls only. Our names are Helena, Nadyne,

Pauline, Elise, Annerieke and me, Jolijn and we’re computer science and

mathematics freshmen. After we all confirmed to join the MeisCie, we first

met in November. The communication so far had been in English, but none

of us necessarily expected an international student to become part of the

MeisCie. This was new for committees at CH in general. We can conclude that

communication in English is no problem for us, since we even managed to

explain Helena what the ‘Gelaarsde Kat’ dip is (ask Annerieke if you want to

know more). So Helena, if you read this, we’re more than happy to have you

as our secretary!

The one thing that all girls love is food. When Nadyne came up with the idea to

have one of us bring snacks to each meeting, everyone responded enthusiasti-

cally. In January, just after the Christmas holidays, we got to share our baking

skills with the old MeisCie. We invited them to join us for lunch and shared

some experiences. It was definitely nice meeting the girls whose footsteps

we follow. Also, Annerieke finally had the opportunity to bring her favorite

Gelaarsde Kat dip. It satisfied our high expectations. You should taste it.

As the year passed, we enjoyed the activities that were organized by other

freshmen committees. On the 13th of February, it was finally our time to shine.

We’d spent our time well during the meetings, so we were more than ready to

host the girls that bought tickets for the wine tasting. After we put on our

pastel pink skirts, we made sure the /Pub was fully decorated in pink as well

(once in a lifetime experience). Around 8 o’clock the activity started. The first

wine was served: a medium fresh Spanish Cava. As we had carefully selected

and reviewed all types of wine we would be serving, we first told something

about the origin of the wines before people actually got to taste. Also, the

wines were served in combination with snacks that perfectly went well with

the type of wine. About 20 minutes after the Cava, an Italian chardonnay

followed. After that the classic pinot grigio, followed by a South-African mix

between a sauvignon and a shiraz. The first (and only) red wine served was

a French merlot. We ended off with a sparkling dessert wine, served in com-

bination with ice cream and delicious fruits. Around 10 o’clock, the activity

was officially finished. However, since there were about twelve full bottles of

wine left, most people decided to stay. Who on Earth denies free wine? In the

end, all bottles were empty. Enough reason to conclude that the activity was

a great success!

Could you not make it to our first activity? Or even worse, were you not invited?

Don’t be sad! We will be organizing a delicious lunch in May, and even boys are

allowed to come. However, they will have to wear some girly accessories. So

stay updated and we’ll see you there!

Volume 23 • Issue 3 • May 2019
As

so
ci

at
io

n

As the roosters cuckoo’d their merry way into the morning, and as the

dusk had begun to subside, nothing was more clear. Earth’s orbit around

the sun had once more birthed February onto us. And boy was February

excited to wreak its havoc onto, as of yet, 40 unrelated youngsters.

The road ahead was a long one, an exciting one, and in retrospect some

may even say a joyous one. As the hours passed on this inaugural day

of February, the excitement escalated for every single one of these 40

persons. 18.00 on the 1st of February, 2019. The Wispo had begun.

Chapter 1: A new beginning
One after another, people began to take place in the bus destined to take them

on the ride of a lifetime. Kilometer after kilometer was being traversed by the

bus, the distance eclipsing country after country. Not before long, only a few

hours after the ride had begun, the passengers were starting to feel a bit tired.

Falling like dominoes into a deep slumber, most had awakened to find them-

selves in France at the foot of the mountain. The mountain on which they

had been promised a splendid week of skiing, snowboarding, and shots. The

trifecta of S’s was indeed what they had been promised, however this trip

brought another s with it: the s for stall. For they had another 6 hours to wait

until the climb to the top of the mountain began. Finally, around 16.00 on

the succeeding day from when their journey had started, they had arrived at

the location that was supposed to be granted to them. In true unsupervised

student fashion this meant it was time for the holy grail of beverages, the ale

to end all ales, the brew with an unparalleled level of passion and party: beer.

As our party of 40 partied their way into yet another few hours of darkness a

new challenge awaited.

Chapter 2: The roads untraveled
Sunday morning. Awakening from their deep slumber, it was time for the second

obstacle -- going to everyone’s respective skiing or snowboarding class. As the

narrator does not know what happened during any of the snowboarding- or

advanced skiing classes, this part of the story will focus on the beginner skiing

classes. It all started halfway on a green slope. Should be easy, right? Right?

It’s only green, right? WRONG! Following a solid 10 minutes of trying to put

on their skis, our great heroes Kilian and Karel had to make their way to the

bottom of the slope in order to reach their class. Their lovely, momentary

teacher Noortje tried to tell them a multitude of times how to ‘pizza punt’ with

their skis as to not fall on whichever limb had to be so unlucky. All her effort

remained in vain. Fall after fall, drop after drop, descension after descension.

Kilian and Karel kept on falling into the snow at high, uncontrolled speeds.

In the wake of their traumatizing path to glory, Kilian and Karel had finally

reached the bottom of the slope and it was time to go to their classes. Here

they found out that they were to meet up with 2 more leCHends. Claire and

Lynn had been the chosen ones to join our 2 heroes on their path. The Fab Four

had been formed. Longing for technical development, they listened carefully

to whatever their instructor, Thomas, told them. The first few exercises went

well. Enthusiasm increased. Our foursome had finally learned how to ‘pizza

punt’. No more traumatizing descensions for them! The exercises after that

went well as well. Enthusiasm increased once more. Balance was no longer

an issue for our talented bunch. Everything seemed to be a walk in the park

on this first day. Emphasis on the ‘seemed’. The class went further without a

hitch and before long they had completed their first day. Time to replenish

their energy levels with something satiating. Satiated, our group of 4 decided

to split up. Claire went on with her day skiing with her boyfriend, Lynn joined

Merel and Julian and Kilian and Karel opted on going with their friends Mandy,

Noortje, Jules, Jolijn and Janne. Remember how everything seemed to have

gone well? Surprise! Not anymore. Remember how they had been traumatized?

Well not like ever before. It was time for the slope of a lifetime. Their first

official, fully crossed slope. Having reached the top of the slope, Kilian and

Karel’s blood sugar spiked to levels comparable to only the most adrenaline

inducing activities. A rush overcame them, and on they went. Kilometer per

hour after kilometer per hour, their speed increased to heights never reached

before by themselves. White -- that was all they saw when their heads peered

up from the snow bank they had landed into. Perhaps a careful approach was

more fitting for their current level of skill. After this new approach the descent

went a tad smoother and they reached the bottom after some time. Hours

passed and our friends procured themselves a grand amount of intoxicants to

ingest during fanciful activities. One inebriated sleep later and the sun had

come anew.

The CHilling adventures of the ski trip
Karel Bouwmeester, Participant of the ski trip

12

Volume 23 • Issue 3 • May 2019

Chapter 3: A new day has come
Cheerful mornings aside, day two on ski’s provided new options to our festive

friends. A new instructor had come across their path to greatness: miss Natha-

lie. Nathalie strived for success, and was determined to extract the hidden

talents out of the Fab Four and make them the best skiers they could be. She

had not realized, however, that our Fab Four had been practicing for hours

after the instruction provided by Thomas, and had developed themselves into

quite competent skiers for the level they were supposed to be at. The challenge

for this day had been the slope they had gone off of the day prior. Today this

proved to be so easy, that they had taken it upon themselves to go off of the

highest green slope to which they had access. At a height of 2.2km, this slope

far surpassed the challenges of what seemed like yesteryear. As that slope

only had a height of 1.5km. Turn after turn Kilian and Karel went downwards,

the slope seemed to go on forever until they had finally reached the bottom.

Not having fallen, they felt extremely accomplished. Not wanting to ruin their

high, our musketeers went home. An unexciting night was ahead, as the Yeti

bar had been closed for our friends from CH. Thus, and because they were

very tired from the early awakening from that morning, they went to bed to

maximize their skiing hours on Tuesday.

Chapter 4: The night to end them all
Feeling refreshed from their long rest, Karel and Kilian were very excited for a

new day of adventures. Their class proved to be a bit of a letdown in when it

came to this however, and they had to go down the same slope they practiced

the day before. An unexciting class later and they went off of the massive

2.2km slope a couple of times to practice some more skills, this time including

parallel turns. Longing to prove themselves to their peers, the students of CH

played a game known, and loved, by students across the globe: Beer pong.

The teams were divided by sleeping rooms, so Jules and Karel were in the

same team. Kilian was part of the team that organized the entire trip. Janne,

Mandy, Noortje and Jolijn were on the same team. And lastly Lynn, and Merel

were joined by their companions. It was a true spectacle. Tears had been shed,

blood had been drawn, but there could only be one winner. The previous board

had won.

Chapter 5: Into the darkness
After the excitement of the beer pong tournament, the days went on without

much differentiation. On Thursday it was

Karel’s birthday and that was magnificently

celebrated in the Yeti bar. So much so, that

he’d been denied re-entrance after exiting

for some cooling down. On Friday we made

a group photo with the entire gang. To

commemorate a, so far, very fulfilling trip.

It was also the last day of the skiing classes

and after a week of hard work Kilian, Karel,

Lynn and Claire had finally earned their long

yearned after certificate. Saturday was used

by most to turn in their ski’s and wait on the

bus which would take them back to EWI, but

Jules decided it was much more fun to use

his last day of skiing for overstretching his medial collateral ligament. This was

obviously much more fun than a calm day of waiting, because this red devil

craved the excitement of recklessness. Once this was all taken care of it was

time to go to the buses and start the journey of going back to EWI.

Hours passed, alongside a detour to the McDonalds, and the end started to

approach. The gang arrived early on Sunday morning, and departed their ways.

This was the ending of an unforgettable ski trip. The second semester of the

year had begun.

Association

13

14

Party by the SjaarCie
Pravesha Ramsundersingh, Secretary of SjaarCie

Volume 23 • Issue 3 • May 2019
As

so
ci

at
io

n

Since the beginning of my journey in Delft, I was always interested in the

study association Christiaan Huygens (CH) and its ability to engage stu-

dents within Computer Science and Applied Mathematics. This academic

year, I am honored to be given the role of Secretary within the SjaarCie.

This is a first year committee, commonly known for its organization of

a party in February and a barbeque in June. This Committee consists of

12 lively students within the study association, each assigned with a

specific role dedicated to the organization of the aforementioned events.

The first event on the list was the party! On February 20th, the SjaarCie of

18’-19’ organized their first event: Hakuna MaSjaarCie. The theme for the party

was inspired by Disney’s The Lion King, which allowed us to cleverly combine

our Committee name with the popular saying ‘Hakuna Matata’. The main goal

of the event was to give students the opportunity to unwind and forget their

worries for a night.

Although I entered the committee at a relatively later stage than the other

members, I was still able to witness and participate in the incredible amount

of effort the committee had put into the preparation of the event. My role as

Secretary included the taking of minutes for each weekly meeting, producing a

schedule to assign roles for the evening and any extra promotional affairs such

as posters or the selling of tickets.

A week before the event, the first and second floor of EWI were covered in

vibrant SjaarCie posters. You may have also noticed a bunch of enthusiastic

students strolling around the faculty building, actively promoting the event.

The day of the party had finally arrived and the SjaarCie was feeling a mixture

of emotions, ranging from anxious to thrilled. We still had much to do. From

last minute stops at SoLow to decorating the Bierfabriek with balloon animals,

the SjaarCie was constantly on the move. To be easily recognizable and blend

with the playful theme of the party, the SjaarCie also decided to dress up

as a variety of animals. With our white shirts, green suspenders and animal

costumes, the party was ready to commence!

Following the great success from last year, the SjaarCie decided to hold the

party in Bierfabriek again, which is located perfectly in the center of Delft.

Despite the fact that we had sold a small number of tickets in the beginning,

that evening the Bierfabriek reached its maximum capacity at a very fast pace.

The combination of the upbeat music, beer pong and the high-spirited people,

generated the perfect problem-free vibes.

Alongside Alessandra, responsible for the Clothing Affairs of SjaarCie, I was in

charge of serving the welcome drinks of the event. Matching the theme of the

party, the welcome drink was Safari, allowing our guests to be welcomed by a

sea of golden shots. Not only did I get the opportunity to greet everyone, but

I was even able to take a selfie with DJ PJ. And what’s a party without a selfie

with DJ PJ? Throughout the night we had insanely talented DJs, including

Hidden Dancefloor, DJ PJ and Struikrover. Even as the party came to its end and

eyes were beginning to close, the SjaarCie Committee enjoyed cleaning up the

decorations whilst reflecting on the highly successful night.

Although not everyone could make it to the early morning lectures the next

day, the reviews of the party were all positive. I am proud to say that the

SjaarCie, once again, held a sensational party. The effort and dedication of the

team was accurately displayed in the event and we hoped that each and every

one of you enjoyed it as much as we did. If you were not able to attend this

party, be sure to join us at our upcoming barbeque in June! Not only will there

be delicious food, but the sun will also be shining. Till then you can often spot

the SjaarCie in our dark green sweaters!

Computer Science

16

Volume 23 • Issue 3 • May 2019
Ad

ve
rt

or
ia

l

The young programming language Rust can do anything C and C++ can,

so what is the difference? Rust guarantees protection against a large

number of memory problems. Rust therefore solves a problem with which

programmers have been struggling for decades.

Von Neumann and memory management
The basis for computers and computer programs is the Von Neumann model

which is over seventy years old. This architecture has one memory that holds

both the instructions as well as program data. Programmers must thus always

spend a lot of time on the memory management of their code.

Figure: The Von Neumann model.

The commonly used programming languages C and C++ offer no support for

automatic memory management. The programmer must deal with this himself.

An error is easily made. When the programmer reserves a hundred memory

locations and the program writes something to

location 101, we call it a ‘buffer overflow’.

During a buffer overflow, it is often unclear

what is going on at that particular moment.

The best case scenario is that a piece of

memory is being written that was not being

used anyway. But the consequences could be

much bigger. What if a crucial piece of data, a

password for instance, is being overwritten or deleted? Will the deleted data

be read by a different application down the line or by the operating system?

In that case, sensitive information can end up in the wrong place. Whatever

happens, it will occur outside the programmer’s control.

Secure programming in Rust
Rust is a relatively new programming language. Like C and C++, it is a system

language that is suitable to construct system software, such as operating

systems, drivers and compilers. Rust programs compile directly to machine

code, enabling the executables to remain small and making maximum perfor-

mance achievable.

There is one thing that sets Rust apart from most of the other mainstream

languages: when it comes to memory management, Rust is very strict. It is an

automatic process. Even during compilation, the Borrow Checker (see frame)

is checking the memory management. Does the program code run the risk of

memory problems during runtime? Borrow Checker will then abort the compi-

lation. The same happens when the code causes data races: parallel processes

that access the same memory location simultaneously. Secure programming is

thus enforced. For hardcore programmers, programming with Rust is therefore

an entirely new experience, despite the similarities to C and C++. They need to

get used to the strict Borrow Checker.

Rust is not the only language that offers a solution for memory management.

A language like Java does the same but during runtime which results in serious

consequences for the performance. A significant disadvantage when software

needs to respond as quickly as possible, for instance in medical or industrial

applications. Rust does not have this disadvantage. It is also possible to

program unsecured in Rust, but this can only be done when the programmer

explicitly chooses to do so.

Buffer overruns – Heartbleed
Buffer overruns are the cause of many computer problems, such as crashing

and vulnerability in terms of attacks. The past years have revealed multi-

ple exploits: vulnerabilities that are the result of these types of errors and

which could have significant consequences.

Recently, a vulnerability was discovered that became known as Heart-

bleed. The total costs for a world-wide update of the systems is estimated

at a minimum of five hundred million dollars. The error was included in a

component, OpenSSL, that is being used, among other things, in network

routers and webservers. This vulnerability allowed encryption keys to be

read remotely from these systems. With captured encryption keys, an

attacker can read traffic from and to the systems and pretend to be the

original owner of the key. When the key of a bank’s webserver is discove-

red, an attacker can pretend to be the webserver of the bank without the

user being able to tell the difference in their

browser. This vulnerability would not have

occurred if OpenSSL had been written in

Rust.

New programming language ‘Rust’ provides
well developed memory management
Technolution

17

Volume 23 • Issue 3 • May 2019
Advertorial

The clients’ interests
Technolution uses various programming languages and chooses the one that

is most suitable for the solution. Most of our clients do not have a preference

when it comes to language. They are mostly interested in the finished product

and expect an application that is powerful, can be maintained well and does

what it is expected to do. The selection of the underlying technology is gene-

rally left up to us. The decision regarding which language to use is therefore

often made by us.

When do we decide to use Rust? This strongly depends on the context. Various

questions play crucial roles. What are the security demands? How important

is high performance? Rust and the corresponding ecosystem are still in the

developing phase, but the language will certainly be considered for the deve-

lopment of new applications that require high performance, robustness and

protection against exploits. The interests of the client are, obviously, the

deciding factor amongst these deliberations.

Ecosystem and community
Compared to other programming languages, Rust is still very young. The lan-

guage started out as a private project of a Mozilla employee; Mozilla being the

manufacturers of the open source Internet browser Firefox. Mozilla published

the first stable version in 2015. Just for comparison: Java dates from 1996

and the first version of C hit the market in 1972. New programming languages

become available on an almost daily basis. Most of these are quick to disappear

and fade into oblivion. It takes time for a new language to gain enough credit

amongst developers and become a fixture. Nevertheless, there are enough

reasons to have faith in Rust’s future.

What makes a programming language stand out? And when is a language labeled

‘successful’? Firstly, it is important that the language has a proper syntax and

can be easily read. Performance is also crucial in many fields of application,

just like support for data structures and various operating systems. Rust meets

all of these demands. However, a good programming language is not the same

as a successful programming language.

In order to be successful in the world of developers it is especially important

that a programming language comes with an extensive ecosystem and a strong

community. Java is a good example of a language that made it big due to a

proper ecosystem with many libraries, supported by a lively and well-organized

community. The community is also one of Rust’s strong points.

Mozilla has an excellent reputation when it comes to supporting open source.

Their Firefox browser has a large community that actively contributes to the

safety of the browser, the development of new features and solving bugs.

From the very beginning of Rust, Mozilla opted for an insightful update

scheme, a flexible and elaborate support for libraries, and a powerful and

quickly increasing community. A developer that starts to use Rust will find that

excellent documentation is already waiting, a large set of ready-to-go libraries

is available and there are many others at hand to help whenever questions or

problems occur.

Technolution and Rust
Our introduction to Rust took place in a typical Technolution manner. Most

of Technolution’s developers have experience with multiple programming lan-

guages. One of them needed a well performing language for the development

of a videowall application. Java did not offer the desired performance and it

had been a long time ago since our colleague had used programming language

C. He therefore decided to go with Rust and was pleasantly surprised by the

stability, the ecosystem and the ease with which he could work productively in

Rust. Other colleagues were soon infected by his enthusiasm. This was enough

incentive for us to further explore Rust.

A year has passed since. Rust has proven itself in various projects. The lan-

guage has gained a lot of momentum and we have started organizing internal

and public workshops for developers. The reactions have been promising. There

is a lot of interest, both within as well as outside of Technolution.

Trust and investment
We have faith in Rust and are therefore contributing to the Rust community.

We are actively involved in several Rust user groups in the Netherlands. We are

also working on increasing the applicability of Rust from a content perspec-

tive. In a collaboration with the TU Delft, we are, for example, developing a

tool that should recognize all possible error conditions in software that have

been written in Rust and perform corrective measurements accordingly. The

software will no longer collapse and is thus continuously available to execute

the required functionality.

In addition, we are also looking into the possibilities for the use of Rust in

the open source processor architecture RISC-V. This is currently entirely coded

in C. Rust compiles to a native executable in machine code, offers automatic

memory management and is therefore particularly suitable for this application.

Obviously, we also take any disadvantages into account. Is it even possible with

Rust? Are there any consequences regarding performance? What limitations do

we encounter? We use a softcore version of RISC-V in our security platform

PrimeLink which creates quick secured connections based on encryption that

is embedded in electronics. We aim for maximum security and believe that Rust

can contribute to it.

Would you like to join our next Rust Gouda Meetup – please join us at meetup.

com/Rust-Gouda

Borrow Checker – automatic memory management
The secret to Rust’s automatic memory management, without loss

of performance, lies within the Borrow Checker. This bit of software,

which is part of the compiler, carefully records how the programmer is

using the data in the computer’s memory. The Borrow Checker refuses

to translate the program code into an executable file when it includes

memory errors. The Borrow Checker detects

many common errors such as double

18

Volume 23 • Issue 3 • May 2019
Co

m
pu

te
r

Sc
ie

nc
e

RMD: Design of cryptographic hash
functions using Rubik’s Cubes
Gijs de Jong, Honours Student Computer Science

RMD: Design of cryptographic hash function using Rubik’s Cubes

Gijs de Jong

The Merkle–Damgård construction is a method of building cryptographic

hash functions from one-way compression functions [1]. It is used in

many popular hash algorithms such as MD5, SHA-1 and SHA-2. Can a

secure hash algorithm also be created by applying this construction to

Rubik’s Cubes?

Design of RMD (Rubik’s Message Digest)
Constructing a secure hash algorithm from represented bits in a Rubik’s Cube
can be done in infinite creative ways. RMD will use an approach based on
solving a 3×3×3 Rubik’s Cube from a superflip state. This state requires the
maximum minimum moves of all configurations to solve it.
Blocks of bits will be represented as cubelets, smaller cubes that make up the
bigger cube. Consequently, RMD will use 26 blocks. Note that there is no
center cubelet. For efficiency and affordable hash (output) sizes, RMD has a
block size of 32 bits. This results in a final output of 832 bits.

Description
The hash function RMD can be described in the following four steps:

1. Pre-process the message (input).

2. Initialize a 832-bit buffer (H(0)
0 , H

(1)
0 , . . . , H

(26)
0) of 26 32-bit vari-

ables.

3. Compress each block of 832 bits, split into 26 32-bit words, extended to
28 words.

4. Calculate the 832-bit message digest, or hash.

Pre-processing
To ensure the compression function of RMD has 832 bits available for the hash
computation, the input message needs to be padded.

Padding The padding guarantees the message length ℓ is congruent to
768 mod 832. This process can be described as follows: append a single bit
“1”, followed by k zero bits and the binary 64-bit representation of ℓ. This
results in the following definition for k:

k ≡ 832− 64− 1− ℓ

= 768− (ℓ+ 1) mod 832

Dividing the padded message The compression function of RMD com-
presses fixed sized blocks of 832 bits. To generate these blocks, the message
is split into n 832-bit blocks x0, x1, . . . , xn. Each of these blocks is then
divided into 26 sub-blocks of 32 bits, called words. Message block j is divided
as follows:

xj = (x
(0)
j || x(1)

j || . . . || x(25)
j)

Initial value H0 An initial value for H0 is needed to start with the hash
computation. A 832-bit buffer consisting of 26 32-bit values is used to hold
this initial hash value. The values for RMD are generated by taking the first
32 bits of the decimals of the inverse of the decimals of the root of a unique
prime number pn. Variable p is defined to be the series of prime numbers,
with n being the nth prime. This results in the following definition for H0:

H
(n−1)
0 =

1
√
pn − ⌊√pn⌋

Hash computation
The hash computation consists of 28 rounds, each executing a specific
transformation and pre-defined round operations in successive order. The
pre-defined round operations make use of one word Wi and constant Ki per
round i. Since the message block consists of only 26 words, it needs to be
expanded.

Expand message block The message block is expanded by defin-
ing two new words, consisting of previously defined words rotated and XOR’ed
together. This results in the following definition for Wi for the message block
j:

Wi =




x
(i)
j 0 ≤ i ≤ 25

W0<<<3 ⊕W1<<<19 i = 26

W2<<<7 ⊕W3<<<21 i = 27

This article defines <<<n to be a circular left shift of n bits. The rotation
constants were chosen so as to maximize the shuffling of bits.

Transformations In each round i, a specific transformation ti ∈ T

is applied to the cube (and consequently to the current hash value Hi).
This transformation further resolves the superflip state, which RMD does
in 28 transformations (quarter turns). The transformations T recorded in
Singmaster notation [2] are as follows:

T ≡ U , R, R, F ,
B, R, B, B,
R, U , U , L,
B, B, R, U ′,
D′, R, R, F ,
R’, L, B, B,
U , U , F , F

Round operations At the end of each round, a set of the same
pre-defined operations is also executed. These operations ensure that the
values of the cubelets are mixed sufficiently, which is crucial for achieving
security requirements [3]. The round operations use two bitwise functions
and 28 32-bit constants. The intermediate value of a cubelet at round i at
coordinates x, y and z is denoted by hx,y,z

i . The value of the closest top left
cubelet is stored at the first index of (0, 0, 0).

19

Volume 23 • Issue 3 • May 2019
Com

puter Science

RMD makes use of two bitwise functions f1 and f2, which are called majority
and parity functions respectively. The functions are derived to be efficient and
free of bit-based bias. The function definitions are as follows:

f1(A,B,C,D,E) =(A ∧B ∧ C) ∨ (A ∧B ∧D) ∨ (A ∧B ∧ E)∨

(A ∧ C ∧D) ∨ (A ∧ C ∧ E) ∨ (A ∧D ∧ E)∨

(B ∧ C ∧D) ∨ (B ∧ C ∧ E) ∨ (B ∧D ∧ E)∨

(C ∧D ∧ E)

f2(A,B,C,D,E) =A⊕B ⊕ C ⊕D ⊕ E

In each round i, these functions are used to calculate intermediate values of
five cubelets located at the edges and center at the top and bottom of the
cube. This results in the following definitions for f1,i and f2,i:

f1,i = f1(h
0,0,1
i , h1,0,0

i , h1,0,1
i , h1,0,2

i , h2,0,1
i)

f2,i = f2(h
0,2,1
i , h1,2,0

i , h1,2,1
i , h1,2,2

i , h2,2,1
i)

Each round i also uses a constant Ki. These constants are similarly generated
to the buffer H0, but uses a cube root in the process instead of a square root.

The process of the end-round operations that uses of these definitions can now
be described.
Two operations are used in the end-round operations, which are defined below.

x+ = x+ 1 mod 2

x− = x− 1 mod 2

The two operations are used in two extra defined values:

hx′,y′,z′

i−1 =



hz−,x,y
i x = y = z+ = 1

hz+,x,y
i otherwise

hx′,y′,z′

i =



hx+,y+,z−

i x− = y− = z− = 1

hx−,y−,z−

i otherwise

For every cubelet at the end of round i, a new value hx,y,z
i is obtained through

the following modification function:

hx,y,z
0 = H

(x,y,z)
0

hx,y,z
i = hx′,y′,z′

i−1 +





hx,y,z
i <<<8 + hx′,y′,z′

i <<<16 x = y = z = 0

+f1,i + f2,i +Wi +Ki

hx−,y,z
i +




hx,y,z
i <<<3 x = 1, y = z = 0

+hx′,y′,z′

i <<<31

hx,y,z
i <<<21 x = 2, y = z = 0

+hx′,y′,z′

i <<<5

hx′,y′,z′

i otherwise

Applying this compression to every block and adding the output together
results in the final output of 832 bits, denoted as 208 hexadecimal characters.

Analysis of RMD
The security of a cryptographic hash function is crucial, since it must withstand
all known types of cryptanalytic attacks. The speed of a hash function is also
important, since it should be sufficiently “slow” to prevent brute-force attacks,
but remain able to compute signatures of large files. Both the security level
and speed of RMD will be measured and compared to popular hash functions.

Security requirements
Three distinct properties have been found to determine the security level of a
hash function [4]. An overview of these properties is displayed in figure 1.

H

x

H

x1 x2 =?

H(x) H(x1) = H(x2)

H

x1 =? x2 =?

H(x1) = H(x2)

second pre-imagepre-image resistance collision resistance
resistance

Figure 1: Three main security requirements for a hash function

Pre-image resistance determines the “one-wayness” of a hash function.
Given a cryptographic hash function H and a corresponding output (hash) h,
it is infeasible to find an input (message) x, such that:

H(x) = h

Second pre-image resistance determines the difficulty of finding a mes-
sage x2 which results in the same hash as a different message x1:

H(x1) = H(x2)

According to the pigeonhole principle [5], a large domain of such cases,
called collisions, must exist for hash functions. Cryptographic hash functions
use shuffling and transformations to minimize the chance of a collision
occurring. Having a strong second pre-image resistance implies that this
chance is sufficiently low.

Collision resistance implies that it is infeasible to find any two
different messages x1 and x2 that generate a collision:

H(x1) = H(x2)

Security analysis
Preventing collision attacks (and also second pre-image attacks) can be
achieved by ensuring the amount of bits in the output of a cryptographic
hash function is sufficiently high. Collision attacks are based on the birthday
attack, which tries to find a collision with high probability [6]. With a proba-
bility of 50%, this results in an attack complexity of 2

832
2 . Since this will take

hundreds of years to compute, even on a quantum computer, it is currently far
from feasible.

Ensuring strong pre-image resistance means to be free of any bit-based bias,
and show a strong avalanche effect. This effect implies that modifying an
original input slightly should result in a completely different output [3]. Since
the degree of this effect can not be derived from the properties of the hash
function, we will compare it to the SHA-2 family. Compromised hash functions,
such as MD5 and SHA-1, are left out of this comparison.

To test the avalanche effect the following steps are performed. First 105

random messages of length [1, 32] are generated. This amount is sufficient
to average out outliers. Next, for each message, triplets are generated that
consist of the original message, and two where one bit and two bits are flipped
respectively. The hash of the original message is then compared with the latter
ones, to find the percentage of bits changed. The average percentage of all
the messages is displayed in figure 2.

20

Volume 23 • Issue 3 • May 2019
Co

m
pu

te
r

Sc
ie

nc
e

SHA-256 SHA-512 RMD
93.7

93.72

93.74

93.76

93.78

93.8

%
bi
ts

ch
an

ge
d
co

m
pa

re
d
to

or
ig
in
al

ha
sh 1 bit flip

2 bit flips

Figure 2: Comparison of avalanche effect between SHA-2 and RMD

The results show that RMD exhibits the avalanche effect to a stronger degree.

Performance analysis
Comparing the execution time of RMD is also important. To do so, the average
execution time of 105 runs of hashing different file sizes is measured. The
results of MD5, SHA-1, SHA-256, SHA-512 and RMD-832 are all taken into
account. The hash functions are implemented in C++ and run on an Intel Core
i7-4790K with 16 GB of RAM on Windows 10. The results of the experiments
are shown in table 1.

Table 1: Hashing speed of hash functions

Algorithm time (ms)
File size

1 B 1 KB 1 MB

MD5 (128) 0.0006096 0.005724 5.9290

SHA-1 (160) 0.0007570 0.007921 8.0820

SHA-256 0.0011074 0.013670 13.4830

SHA-512 0.0024840 0.015598 15.4372

RMD-832 0.0025554 0.020423 19.8795

The results show that RMD is slower than the other algorithms. As RMD pro-
duces the largest output (and uses a similar construction), this is the expected
result. A lower execution time could indicate insufficient shuffling. RMD per-
forms very similar to SHA-512 for smaller inputs, but does not speed up as
much when the input gets larger. The older algorithms seem to slow down for
larger input.

Since RMD produces a much larger output, comparing the speed per bit is also
important. The results for this are given in table 2.

Table 2: Hashing speed per bit of hash functions

Algorithm time (µs)
File size

1 B 1 KB 1 MB

MD5 (128) 0.00476250 0.04471875 46.32031

SHA-1 (160) 0.00473125 0.04950625 52.66796

SHA-256 0.00432578 0.05339840 57.12890

SHA-512 0.00485156 0.03046484 30.15078

RMD-832 0.00307139 0.02454688 23.89362

The execution times show that RMD hashes its bits more efficiently compared
to the other algorithms. This is not necessarily obvious, as the absolute
execution time in table 1 is expected to be higher.

Although RMD seems to be collision resistant, using the Merkle–Damgård con-
struction introduces a vulnerability to length extension attacks [7]. The high
bit efficiency of RMD could be used to protect it against these attacks. By trun-
cating the hash to 512 bits, RMD will reserve 832 − 512 secure bits against
these attacks.

Conclusion
If you have read and understood everything so far, you now understand the
basics of (constructing) a cryptographic hash function! I really enjoyed de-
signing this algorithm and am happy with the results. RMD delivers comparable
execution time to SHA-512 for smaller inputs, a higher avalanche effect and
high bit efficiency. The reader with a keen eye may even have spotted that I
slightly adapted the used Merkle–Damgård construction to maximize bit prop-
agation. So to answer our main question: yes, we can construct a secure hash
algorithm from Rubik’s Cubes! And now so can you!

Managed to break RMD? Or have any suggestions for improvements? Do not
hesitate to contact me: g.p.dejong@student.tudelft.nl

References
[1] I. B. Damgård, “A design principle for hash functions”, in Advances in Cryptology — CRYPTO’

89 Proceedings, G. Brassard, Ed., New York, NY: Springer New York, 1990, pp. 416–427, ISBN:
978-0-387-34805-6.

[2] D. Singmaster, Notes on Rubiks magic cube. Enslow Publishers, 1981.

[3] S. Ramanujam and M. Karuppiah, “Designing an algorithm with high avalanche effect”, Dec. 2018.

[4] R. C. Merkle, “Secrecy, authentication, and public key systems”, PhD thesis, Stanford University,
Jun. 1979.

[5] I. N. Herstein, Topics in algebra. Xerox College Publishing, 1964.

[6] M. Tuba and N. Stanarevic, “Relation between successfulness of birthday attack on digital signa-
ture and hash function irregularity”, WSEAS Transactions on Information Science and Applications,
vol. 7, Feb. 2010.

[7] Y. Dodis, T. Ristenpart, and T. Shrimpton, “Salvaging merkle-damgård for practical applications”,
in Advances in Cryptology - EUROCRYPT 2009, A. Joux, Ed., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 371–388, ISBN: 978-3-642-01001-9.

21

Volume 23 • Issue 3 • May 2019
Com

puter Science

Have you ever been to an escape room? If you did, you probably noticed

that you are being monitored by cameras as you play. The person

monitoring you is called the game master. The game master can give you

hints when you get stuck or can trigger certain events in the escape room

to progress the storyline.

Last year, I completed my Bachelor End Project (BEP for short) at Popup-Es-

cape. Popup-Escape is a small company started by an old TU Delft student. The

company creates and hosts personalized escape rooms. Our goal was to create

a system to automate the role of the game master.

We came in contact with Popup-Escape through BEPSys. They posted an

opportunity to research ways to enhance their escape room experience with AI

characters. This seemed like an interesting and fun research opportunity, so

halfway through March me and 3 other interested students set up a meeting

to discuss the specifics of the project. After this meeting, we were all exci-

ted about the project and thus contacted a TU Delft supervisor. We found a

supervisor on BEPSys who had showed interest in supervising the project and

scheduled a meeting with him as well. With a project and a supervisor in place,

we were now ready to get started.

On the 25th of April, we had our first day in the office. Our office was on

the 19th floor of the Torenhove, one of the tallest buildings in Delft. We

shared that office with another group who were also completing their BEP at

Popup-Escape. Walking into that office space you also realize that this project

is the only thing you have to focus on for the next couple of months. No

lectures, no assignments. We were in charge now, and I liked that feeling of

independence. The start of the project was an interesting part of the project.

It kind of felt like setting up a small company. Every team member got assigned

a role with accompanying responsibilities like Team Leader, Lead Programmer,

Head of Communications and Head of Management. You have a vague idea of

your goal, but computers do not like vague. You have to choose what techno-

logies to use, what your system will look like and what features it will have.

We had multiple meetings with our client discussing our current thoughts on

the projects. It became more and more clear what we would be building the

next couple months.

In this part of the project I realized our team had quite a diverse mix of

personalities. We also had quite a different style on how to tackle these kinds

on projects. This led to a lot of fierce discussions. At first, I thought this was a

bad thing. The other team in our office did not have any of these discussions,

so it seemed like they had everything figured out. Later, I realized that these

discussions were needed to get everyone on the same page on what you are

going to build and how you are going to build it. The other team ran into

trouble with that later on. If there is anything you should remember from

reading this, it should be that silence is not always a good sign and it is okay

to disagree (a lot), as long as you agree on an approach in the end. It will only

make your final product better.

After two months of work, our system began to take shape and we got the

opportunity to do something really cool. A group of 27 people would play an

escape room powered by our system. We were quite afraid that our system

would fail, since we would not get an opportunity to test the system on this

scale again. And of course, a lot of things went wrong. A few hours before

the test, a service we relied on decided to do maintenance on their servers

which was not a scenario we were prepared for. We quickly changed the code

to at least get the other parts of our system ready for testing. During our

test, that partial system also did not work as expected. We uncovered a lot of

user behavior we did not account for in our system. While my team members

thought the test was a failure, I thought the opposite. The system did not work

as we wanted to, but we gained so much information on how our system could

fail. That is the whole point of testing in the end. The remainder of the project

we worked on fixing all the mistakes we had uncovered and did another user

test. This time, everything worked exactly as expected and our client was very

enthusiastic about our product.

Once the project was done, I was the one to present the finished project to our

client, supervisor, family and friends. It is nice to show everybody what you

have been working on for the last couple of months. After the presentation,

our client asked us if we wanted to further develop the system for an upcoming

project, which I did during the summer.

After completing your BEP, you realize you have learned a lot during your

bachelor. Not only do you have the theoretical knowledge, but also the prac-

tical skills needed to make such a big project a success. That is something you

can and should be proud of.

What a BEP really teaches you:
Discussion, Failure and Success
Timo van Asten, Student Computer Science

Mathematics

24

Volume 23 • Issue 3 • May 2019
M

at
he

m
at

ic
s

Erasure Coding for Storage of Data in the Cloud
Joey van der Krogt, Student Applied Mathematics

Erasure Coding for Storage of Data in the Cloud

Joey van der Krogt

I know that anyone reading this article has data, stored somewhere in

the cloud. May it be on Google Photos, Dropbox or even Facebook. This

data is stored on servers across the world. The problem is, when such a

server fails, your data will be forever lost. How do all major

IT-companies make sure this doesn’t happen to their, and therefore your,

data? And how can they do this without spending millions of dollars?

In today’s world, the collecting and saving of data plays a tremendous role. A
countless amount of companies try to collect data in order to predict future
behavior of anything, e.g. customers, terrorist attacks, the weather. These
companies store their data in servers which could all be located in the same
building, but these servers can also be spread out over different data centers
all over the world. Today, Google possesses 15 different data centers, 4 of
which are located across Northern Europe, 8 in the United States of America, 1
in Chili and 2 in Eastern Asia. All of these data centers are of course connected
with each other to store your photos, your email, your browser and search
history, your location and what not. For multiple reasons, sometimes a server
node is unavailable. However, these nodes are connected in such a clever way
that when one fails, the data can be recovered from the other servers.
All major IT-companies nowadays make use of the same code which secures
their data. However, there has always been one great disadvantage to this
code: its node repair scheme cost a lot of computing power, and therefore
money and time. The authors of [1] found that a tremendous amount (median
of 180TB) data was downloaded per day to repair failed nodes. Moreover, this
was a data center where only a part of Facebook’s cold data1 is stored. This
costs these companies millions of dollars per year, so every percent of handling
data failure more efficiently would mean the saving of a fair amount of money.
This was an issue, until recently a group of researchers from India found a
solution [2]. Their code performs very well: it saves not just a percent, it can
save 25%-50% of data download! Before we will discuss this, we must look
at what causes the problem of the currently used code. For the reader with
no knowledge about erasure coding, we start off with two simple examples
by which we introduce the two parameters that define the quality of a code.
The reader that already has this knowledge can move straight on to the Reed
Solomon Code section.

Introduction to erasure coding
An erasure code is a mathematical way of adding ”meaningless” data to a sys-
tem of original data in such a way that when a node fails, the data can be
restored from the others. We say that the original data consists of message
symbols and the meaningless data consists of parity symbols. We will look at
two basic ways of storing 16 message symbols. For simplicity the symbols here
are bits, and we will see how efficient these simple codes perform by looking
at the two most important parameters: storage overhead and the repair band-
width. Both definitions speak for themselves when we discuss the following

1Cold data is data that is rarely used or accessed.

Figure 1: A direct copy of every information server (often called 2-Replication).

two examples. The code above stores 32 symbols where the original data was
only 16 symbols, which makes the storage overhead = 32/16 = 2. For the re-
pair bandwidth we look at what happens when we want to repair 1 failed node.
When the first information server fails, we have to download the 4 symbols of
the first back-up server in order to restore the lost information, making the
repair bandwidth for 1 failure = 4/16 = 25%. Let’s compare this to the following
code.

Figure 2: One parity server based on the sum of each row of bits of the
information servers.

This code stores 20 symbols, so the storage overhead here is only 20/16 = 1.25.
This means that the second code scores better in terms of storage overhead.
However, when node 1 fails we need to download all remaining 16 symbols
(and take the sum of each row) which makes the repair bandwidth for 1 failure
= 16/16 = 100%. This means that the first code scores better in terms of the
repair bandwidth (when only 1 server fails), but the second code scores better
in terms of storage overhead.
The two codes I studied also had this trade-off. You could say that a code
that has low storage overhead costs but a slow repair method is more useful
for cold data, since it does not matter how long it takes to repair the data.
Where a code with a faster repair method and higher storage overhead costs,
is more useful for hot data, since that data needs to be repaired as quickly as
possible. Now let’s dive somewhat deeper into the currently frequently used
code: the Reed Solomon Code.

Reed Solomon Code
From what you have read in the preface, you probably think that the Reed
Solomon Code is a rather useless code and that the world was waiting for
it to be replaced. I want to stress that this is certainly not the case! The
Reed Solomon Code is a very beautiful and elegant code which made all sorts
of communication (from reading DVDs and bar codes to receiving pictures
from the Voyager Spacecraft) possible. It is far too complex to explain in
this amount of text, however a lot is written about them for those who are

25

Volume 23 • Issue 3 • May 2019
M

athem
atics

interested. We will unfortunately only look at its disadvantage, the repair
bandwidth, so that we can see how this problem was recently solved. We will
see in a bit that for the Reed Solomon Code, the repair bandwidth is always
100%, which makes node repair extremely expensive and slow. It not only
costs money, but when a server fails it also takes a lot of time to repair,
making it unfit for the storage of hot data.
Facebook makes use of the (14,10)-RS code, meaning that to 10 servers with
message symbols, 4 servers with parity symbols are added. Again, we will
not look at how the Reed Solomon code works exactly, we will only discuss
a superficial way of looking at them, in order to understand their problem.
The only real important thing you have to know up front is that symbols are
not bits anymore: we now have more than 2 options per symbol. This makes
multiplication possible. When for example we multiply a bit by 2, it is either
0*2 = 0 or 1*2 = 0 and you can see the problem with that. This is now not
the case anymore, because we work over the finite field GF (pr) with p prime
and r a positive integer. When for instance we choose GF (24), a symbol
consists of 4 bits, making 24 = 16 possible symbols. The only thing you need
to remember for now is working with non-binary symbols makes multiplication
”possible”.
Say we have a message a consisting of 10 symbols a1, ..., a10. The way a
parity symbol is created, is by multiplying a to a coding vector p. All 4 coding
vectors are linearly independent. This gives a situation like this:

Node 1 a1
...

...
Node 10 a10

Node 11 pT1 a
Node 12 pT2 a
Node 13 pT3 a
Node 14 pT4 a

Table 1: The result of coding a message a of 10 symbols, according to a
(14,10)-RS encoding scheme.

You can see that the storage overhead is 14/10 = 1.4, which is excellent.
However, when node 1 fails, the optimal repair scheme is to download the
parity symbol of node 11 (pT1 a), along with the message symbols a2, ..., a10
(encode them) and subtract these from the parity symbol. This means that
the repair bandwidth for 1 failed node is 10/10 = 100%.
When 2 nodes fail, say nodes 1 and 2, we download the message symbols of
nodes 3,...,10 along with the parity symbols of nodes 11 and 12, we subtract
the message symbols, and we have two linearly independent equations, with
two unknowns, which is solvable. Again a repair bandwidth of 100%. This way
you can deduce that it can repair up to 4 node failures, which is also excellent,
but the repair scheme is not that impressing. The researchers that came up
with the following code saw the same problem. They discovered a way to keep
the excellent parameters intact, whilst improving the repair bandwidth. They
came up with the brilliant idea of Piggybacking.

Piggybacking
The real problem with the Reed Solomon Code is that each parity symbol consist
of a mapping of all message symbols. This way we always have to download
all remaining message symbols to subtract them from the parity symbol(s).
The saving of the repair bandwidth in Piggybacking lies in the fact that the
researchers tried to save downloading message symbols. They do this by (here
comes a tricky sentence) ”piggybacking” parts of message vectors onto other
parity symbols. We will illustrate with the following toy example what we
mean by this. Say we use a (6,4)-code, not necessarily RS, which stores two

messages a and b next to each other. We have the following situation:

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6

a1 b1

a2 b2

a3 b3

a4 b4∑4
i=1 ai

∑4
i=1 bi∑4

i=1 iai
∑4

i=1 ibi

Table 2: Messages a and b, both of length 4, encoded according to some
(6,4)-code scheme, not necessarily RS and stored next to each other.

Same as with the Reed Solomon Code, we see that when a node fails, say
node 1, we need to download the parity symbols of node 5, and subtract the
message symbols of nodes 2, 3 and 4, to restore the lost symbols. The repair
bandwidth again is 8/8 = 100%. What we now mean by piggybacking is done
in two steps. Step 1. add half of the summation of node 6, instance 1, to
the parity symbol of node 6, instance 2. Step 2. subtract that result from the
parity symbol of node 6, instance 1. This looks as follows:

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6

a1 b1

a2 b2

a3 b3

a4 b4∑4
i=1 ai

∑4
i=1 bi∑4

i=3 iai −
∑4

i=1 ibi
∑4

i=1 ibi +
∑2

i=1 iai

Table 3: Messages a and b first encoded by some (6,4)-code scheme and then
piggybacked

Now the magic happens, because when now node 1 fails, we download all 5
remaining symbols from instance 2, together with the symbol a2. First we
deduce b1 by subtracting b2, b3 and b4 from

∑4
i=1 bi. Then we subtract all

four message symbols bi together with a2 from the parity symbol in node 6,
instance 2, and we know a1. We did this by downloading only 6 symbols,
making the repair bandwidth 6/8 = 75%! We also see that this did not cost
us anything extra. There is no extra data saved, the storage overhead did not
increase, and it can still repair up to 2 failures, which is equal to the amount
of parity nodes. It simply decreased the repair bandwidth.
Like I said, the example above is just a toy example. The real Piggybacking
encoding scheme is a bit more complex, and in practice we mostly use more
nodes with longer messages, making calculations more complex. And secondly,
what happens when a parity node fails? And what happens when 2 nodes fail?
Or 3 or 4? The Piggybacking scheme is a complex scheme, and it does not help
for any amount of failures, however, it increases the performance of the Reed
Solomon Code drastically. During my thesis I found that for 1 failed node the
repair bandwidth of the Piggybacked (14,10)-RS code, which Facebook uses,
is 67.21%.
Currently the Piggybacking codes are being tested in multiple IT-companies.
I am very curious if the beautiful Reed Solomon Code will disappear from the
face of the earth. May it be because of Piggybacking, or because of an even
faster code that is yet to be discovered.

References
[1] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, K. Ramchandran A Solution to the

Network Challenges of Data Recovery in Erasure-coded Distributed Storage Systems: A Study on the
Facebook Warehouse Cluster, 2013.

[2] K. V. Rashmi, Nihar B. Shah, Kannan Ramchandran A Piggybacking Design Framework for Read-and
Download-efficient Distributed Storage Codes, 2013.

Volume 23 • Issue 3 • May 2019
M

at
he

m
at

ic
s

Are you an Applied Mathematics bachelor student, but not sure if you

want to do a Mathematics master afterwards? Do you like programming

and algorithms? Then maybe it is an idea to make the switch in your

minor!

First, let me introduce myself: my name is Vera, I’m 21 years old and I’m a third

year Applied Mathematics bachelor student. In September, I started with the

bridging program to Computer Science, which I do as my Free Minor. I came up

with this idea myself and so far it has worked out really well! What it exactly

is, how I made it work and why, you can all read down here!

Even though I like mathematics, I do not have a particular area in mathematics

that I really like. The course that I like the most is optimization, which is the

most Computer Science-ish course we have in the AM bachelor. I had already

done the CS elective course in my first year and really liked it. This made me

think about doing a CS minor.

I checked out all the minors within EWI, but they were all still too mathemati-

cal in my opinion. I went to the Master Orientation Day to find out what track

within CS I would like the most and if it would even be possible for me to do

a CS master after my bachelor. Yes, it is possible, but only if I would do the

bridging program to CS.

The bridging program to CS contains a total of 45 EC of courses that cover the

knowledge that you necessarily need to be able to do a master in Computer

Science. You can see the courses down here, although it possibly differs for

the year 2019-2020. Normally, you would do this after your bachelor, and after

the bridging program you would then be allowed to do the master. However, I

decided to do this switch during my bachelor instead of afterwards.

This was possible for me, because I will do my bachelor in 3.5 years, and

so I had the time and space to do the CS courses next to my AM courses.

Furthermore, I did not have to do all the courses. Because of my AM bachelor,

I did not have to do Reasoning and Logic and OOP. The course material would

already have been covered in the AM courses Mathematical Structures and

Introduction to Programming. As already mentioned, I also chose Algorithm

and Data Structures as elective course in my first year, and thus I did not have

to do that course either. For me only 30 EC were left, which fits in a minor.

Even if you did not do Algorithm and Data Structures in your first year, it is

still possible to do the switch. For example, it is allowed to finish your program

after starting your master.

Either way, it all sounds straightforward, but the process actually took quite

some time. This is because I had to follow two procedures: the one of the

bridging program and the one of the free minor. After I had found out what I

wanted to do, I went to Jolien Kooijman, the academic counsellor for bridging

students, among others. She explained to me everything about the program

and answered my questions. She also gave me the schedule of the courses, and

explained the process, which you can also find on the website[1].

It is important that you visit her before starting any step of the process, so

that everything will go smoothly and she knows about you when applying

for the program. This is namely the next step: I had to apply for the program

through mail, where I also motivated why I wanted to do the program and what

courses were left for me after talking to Jolien.

After a while, I received an email with the good news that I was accepted,

which had as attachment a form with the right courses on it, which I had to

sign and send to the CSA. I also visited the CSA several times to make sure that

my registration in StudieLink would work out well.

The process for the free minor is the same as usual. However, it is important

to know that it is better to wait for the confirmation of acceptance before you

start this second procedure. Furthermore, it is also good to know that you need

the signature of the director of Computer Science, which is Hans Tonino now.

However, another person will take over his place next year, so make sure that

you visit the new director of Computer Science for the signature.

At the moment I’m half way through the program and I really like it! Compared

to AM, I like how practical CS is and it feels like solving some sort of puzzles

and challenges. I also like that during the programming, you get feedback on

what works and what doesn’t, while in mathematics you do not get feedback

about your proof. The way of finding out what you are doing by getting feed-

back during the process is very nice. I’m glad that I could have this experience,

also to find out what I like within CS. Besides, now I also have the opportunity

to do a CS master if I want to. Therefore I’m happy that it was possible to do

the bridging program during my minor.

I hope you enjoyed reading this, and that I could give you a good idea of how

the whole procedure works.

If you have any questions, feel free to contact me!

References:
[1] https://www.tudelft.nl/studenten/faculteiten/ewi-studentenportal/onderwijs/stude-

ren-bij-ewi/schakelprogrammas-ewi/

Bridging minor to
Computer Science
Vera Martens, Student Applied Mathematics

26

27

Volume 23 • Issue 3 • May 2019
M

athem
atics

Hello, my name is Mariette and I am a proud member of the TU Delft

Solar Boat Team! I am a fulltime member, which means that I completely

put my studies - namely my bachelor Applied Mathematics- on hold for an

entire year.

Within one year, we design, produce and race a hydrofoiling solar boat with a

team of 28 students. Hydrofoiling means that the boat has wings underneath

the hull attached with a strut. When the boat reaches about 30 km/h, due to

the hydrofoils, the hull completely lifts out the water and the only contact

point is the wings. This means our boat actually flies!

When I tell people that I am in this team, I usually get the same reaction.

It starts with: “Oh, that sounds really cool!” followed by: “But you are a

mathematician, how is that useful for making a boat?” But I have learned this

year that a team such as ours needs a lot of different skills to reach the best

product. When you think of a boat, you probably think of the shape of the hull.

But this is just a small part of what makes a boat. You also need a propeller

to move, a steering system to navigate, a way to store energy and get that

energy to the propeller, a dashboard for the pilot to control the boat and a

way to store all the information and to show this on a screen for the pilot.

These last few functions are where the main focus of my department lies on:

the electronics.

The electronics department focuses on harvesting and storing the energy from

the sun using solar panels, batteries and the electrical controls within the

boat. This means that the pilot can see on his steering wheel where exactly

he is on a map, how fast he is sailing and the motor temperature. Then he is

also able to control the motor according to that information. Apart from that,

he also has control over how high the boat is flying. This is where my function

comes in: I am responsible for programming the boat to fly.

I am of course not the only one working on the flying functionalities of the

boat, there are several aerospace engineers working on the shape of the wings

and the materials used for it. But to make it easier for the boat to fly, we use

a height control system. This is a system that is able to move the wings to

change the angle of attack. If the wing is parallel to the flowing of the water,

the boat will not be able to lift so easily. If you point it upwards though, the

boat will rise out of the water a lot easier. The height control system moves the

wing to help the boat take off and keep a steady height above the water. This

system operates fully autonomously, apart from the pilot setting the desired

height.

The height control system has several sensors around the boat, namely three

height sensors to measure the distance to the water and one gyroscope to

measure the orientation and acceleration in the three dimensions. These

sensors are connected to control boxes: these are like tiny computers that

I designed and built myself. The control boxes take in the sensor data, see

the difference between the desired height and the current height and then

calculate how the wing needs to change position and send this information to

small electrical motors that change the wing angle.

While the designing of the control box and programming the sensor and the

motors relied more on the skills that I gathered during my minor in computer

science, the actual calculation of the wing angle is a lot more mathematical.

The calculation makes use of a PID loop: this is a proven effective way to

control systems using sensors. Think of it as a thermostat with a heater and

an air-conditioning. If the desired temperature is higher than the current, the

thermostat will switch the heater on. But when does the thermostat know when

to switch the heat off? If you do so when you reach the desired temperature,

you are already too late. The heater needs time to cool down, so the residual

heat will make the room hotter than first intended. You’d want to switch the

heater off just before you reach the right temperature, so the residual heat will

be just enough to reach the right temperature.

This is where the PID loop comes in. P stands for proportional gain, as in, the

motor goes faster the larger the angle is. I stands for integral: the loop looks

at a past movement to predict what the next movement will result in. D stands

for derivative: the loop also looks at the future to predict when to stop. The

PID loop takes in several parameters that are dependent on the system it is

used in. These parameters can be tweaked while testing and seeing the result,

but they can also be predicted by modelling our boat in MATLAB.

In the end, it is impossible to completely model the behavior of the water and

our boat. This is why testing is a very important phase. In the end, we are

going to compete in the world championship for sustainable boats: the Monaco

Solar and Energy Boat Challenge! For the first time, we are participating in the

offshore class, which means that we will be sailing on open sea rather than

shore waters and rivers. The design of our boat is completely different from

previous years in order to cope with the high waves and heavy gusts of wind

on the open sea. This year’s boat will take the form of a trimaran. This is a boat

with three hulls, so the boat can be built widely to provide the stability that

is needed. With this boat, we plan to win not only the world championship for

solar boats in Monaco this summer but also to break a world record by crossing

the English Channel as the fastest solar boat in the world. We are the only

student team, so we are very excited! If you are interested in joining the next

generation of solar sailors, be sure to check us out on social media or come to

one of our interest drinks!

Dreamteam as a
Math student
Mariette Schonfeld, Member of Solar Boat Team

28

Volume 23 • Issue 3 • May 2019
Ad

ve
rt

or
ia

l

Maaike de Boer is a Junior Scientist Innovator at Data Science. She sees

TNO as the golden middle ground between university and business,

focused on independent research in the long term, yet close to the

customer.

“At Data Science we focus on sharing and analysing structured and unstruc-

tured data. We do this in three ways, thereby dividing up our fields of work.

Explainable Data Science looks at how you can make data analysis explainable:

how can you break open a black-box algorithm, for example? Responsible Data

Science is about the privacy-friendly side of data sharing and analysis. An

example of this is encryption. And Interoperable Data Science investigates

how to share data in a structured and meaningful way, for example through

blockchain technology and ontologies. We actually work continuously with

all units, for solutions for the medical world, defence, logistics and the agri-

cultural sector, among others. In this context ‘hybrid AI’, a combination of

knowledge-driven and data-driven artificial intelligence, is emerging strongly.

At the moment I’m working on the question of how you can build a structured

knowledge model from unstructured text. In other words: which text leads to

which information?”

COGNITIVE ARTIFICIAL INTELLIGENCE
“I studied cognitive artificial intelligence at Utrecht University. After that

I was able to do a PhD via TNO and Radboud University. My dissertation was

about semantic mapping in retrieving video images based on a search ques-

tion. I was able to apply a combination of machine learning and text mining.

A difficult task, because there were no examples of how we could train the

system. I used the birthday party as an example: which words are related to

the query – for example decorations or a party hat – that you can use to let the

system find images that look like a birthday party? After my PhD I immediately

started working at TNO. For me it was logical, because I had already done an

internship here during my Bachelor studies. From that moment on TNO was

already at the top of my list: since then I tried my best to get to TNO!”

COOL RESEARCH
“TNO does very cool research that you wouldn’t easily be able to do at uni-

versity or in business. At university you are constantly hunting for research

funding, in a very competitive environment. In the business world, research

can be stopped just like that or be directed in a different direction because

it generates more money. As an independent institute, TNO can really focus

on the medium to long term. Serious research, and yet you are closer to the

customer than you are at the university. Moreover, TNO has so many experts in

virtually every field of expertise. Let them get together in a multidisciplinary

team and you get results that nobody expects. Moreover, you learn a lot from

each other. In fact, you keep learning here instead of just repeating the same

trick you once learned.”

AI IN FULL DEVELOPMENT
“TNO gives me the freedom to choose my own projects. I get the most energy

from being able to solve a problem for a customer. By programming. Or by

brainstorming together with the customer or in a multidisciplinary team. My

day is also satisfying when I learn something new, for example about the world

of the customer or about an unexpected application of a technique. I am now

a junior and I would like to continue on the scientist side: continue to do a

lot of research! Now and then I do some project management and I would like

to continue doing that for the variation it brings. But the terrain of AI is just

developing so much. You have to stay fully focused on this, otherwise you just

won’t be able to keep up with this challenging field...”

“Top of my list of employers since
my Bachelor’s”
TNO

“TNO does very cool research that
you wouldn’t easily be able to do at
university or in business.”

Miscellaneous

30

Science Trends
Willemijn Tutuarima, Editorial Staff MaCHazine

Volume 23 • Issue 3 • May 2019
M

is
ce

lla
ne

ou
s

The older you get the faster time goes
Perception of time isn’t the same for everyone. People who are older perceive

their current time to go faster in comparison to time when they were young.

They experienced their younger days to be longer while they were able to

remember everything. J.A. Jones, Professor of Mechanical Engineering at Duke

University, started a research into this phenomenon and came up with an

interesting theory. It is actually quite simple but explains a lot. The brain

makes new neural connections every day so when someone is younger they

have a lot less connections than when they are older. In the brain electrical

signals run through these connections, which means that these signals will get

to their target slower if there are more connections. On top of this, the older

the brain gets the less stable the connections are and this leads to more time

required for every signal to be processed. The last piece to the theory is that

the older someone gets, the less images they process due to a slower brain.

Because the passing of time is highly related to the changing of the images in

your head, time seems to go by faster than when a lot of images are processed.

Apple Watch used as Cardiac Consultation
The brand Apple Inc. is well known for their elegant and expensive products,

from phones to computers and since April 2015 the Apple Watch entered their

collection. This watch has a lot of different features like: checking texts,

making photographs and keeping track of your heart rate. This last feature

is very interesting because of course the watch is worn on the wrist where

an artery is located right under the skin. Now Apple has started funding a

research which looks for a way to make more use out of this feature. The

researchers believe that the Apple Watch could detect heart problems and

started a large experiment with 419.000 applicants who wear the watch to see

if this could actually be a possibility. The watch could apparently see if the

person wearing it could have a heart condition called atrial fibrillation which

is a heart problem that could lead to a stroke or heart failure.

A part of the people who wore the watch got a message that some irregularities

were found and a third of the participants that got a consultation afterwards

actually had problems with their heart. This shows that a lot of research still

needs to be done but Apple believes that it is already a step into the right

direction.

Self-Healing Touch Screen
Almost everyone has had the problem of using a touch screen outside when

it is raining and finding out that they actually don’t work that well. A team of

scientists from the National University of Singapore (NUS) started a year long

research into making touch screens that would have at least three aspects:

they had to be easy to use when wet, they had to be transparent and they

had to self-heal. The team got inspiration from one of the most interesting

sea creatures, the jellyfish, because they are transparent and they sense the

environment although it is wet. They created a gel which consists of a polymer

and ionic liquid which, when combined, allows to self-heal because the poly-

mer network interacts with the ionic liquid via highly reversible ion-dipole

interactions. The skin is created by printing novel material into electronic

circuits and turns it into a soft and stretchable material. It’s electrical

properties change when being touched which can be measured and converted

into readable electrical signals. There are two large advantages of using

this technology: Firstly, it makes a machine more mechanical compliant in

human-machine interaction because it mimics biological tissue and secondly,

because it would create less waste than other touch screens because of its

self-healing properties. Who wouldn’t want to have a cell phone where the

cracks in their screen fix themselves?

31

Volume 23 • Issue 3 • May 2019
M

iscellaneous

Early years and personal life
When a child is born into a successful and wealthy family, it often carries high

expectations for the child to do well. Such was the case for David Hilbert, born

in 1862. His father was a judge and his mother, although she didn’t work, came

from a wealthy family and had a deep fascination for mathematics. David had

a very strict upbringing and this was exaggerated by the fact that he was his

parents’ only son. Surprisingly, for a successful future mathematician, David

didn’t do well in school. He described himself as a ‘dull and silly boy’ in his

school years, this already shows that he didn’t enjoy it that much. However,

when David changed schools for his final year and was educated with a different

approach, he showed great talent for mathematics. Hilbert himself reflected

about this the following way:

‘I didn’t work especially hard at mathematics at school, because I knew

that’s what I’d be doing later.’

Mathematical Works
Hilbert’s list of 23 problems
Due to his very broad and deep understanding of mathematics, Hilbert contri-

buted in many areas of mathematics. One of the works he is very well known

for is his list of 23 problems. This was a list of problems varying greatly in

topic and nature and were unsolved at the time. Hilbert argued that if these

problems were to be solved, then it would raise the whole of mathematics to

a new level. Many academics worked avidly on the problems and many were

solved within several years after the publication. However many remain to be

solved. The first problem that still has to be solved was problem number three

which was formulated as follows:

“Given any two polyhedra of equal volume, is it always possible to cut the

first into finitely many polyhedral pieces that can be reassembled to yield the

second?”

It turned out that this was not true and was proved to be wrong as early as

1900, in the same year as the publication. One of the few unsolved problem is

for example the Riemann hypothesis.

Hilbert’s Paradox of the Grand Hotel
Another famous work by Hilbert is the paradox of the Grand Hotel. It is a

thought experiment showing the counter-intuitiveness of infinite sets. This

thought experiment was introduced in a lecture in 1924. The paradox is about

a fully occupied hotel with an infinite amount of rooms. Suppose that a new

guest arrives at the hotel, how would the owner fit the person in if all rooms

are occupied? The owner decides to move every person up one room, so the

guest in room 1 goes to room 2, and the guest in room n goes to room n + 1.

This procedure makes room 1 available for the new guest even though no one

left the hotel.

You can do this for any finite amount of new guests that arrive. In fact, there

are also ways to do this for an infinite amount of new guests, but the approach

is slightly different. The thought experiment shows that the two statements

‘there is a guest in every room’ and ‘no more guests can be accommodated’ are

not necessarily equivalent. This paradox is a very interesting introduction to

the theory of infinite sets.

Hilbert’s Program
Another famous work by Hilbert is a proposed solution to the so-called

‘foundational crisis in mathematics’, also referred to as Hilbert’s program.

Mathematics suffered from a lack of a formalised foundation. Many previous

attempts suffered from inconsistencies and paradoxes. Hilbert believed that

there was a way to ground all mathematical theories in a finite set of axioms,

all of which were to be proven to be consistent. This would finally provide a

consistent basis for mathematics from which all theories could follow. Hilbert

had strong philosophical reasons for finding this foundation, saying:

“We are not speaking here of arbitrariness in any sense. Mathematics

is not like a game whose tasks are determined by arbitrarily stipulated

rules. Rather, it is a conceptual system possessing internal necessity

that can only be so and by no means otherwise.“

Unfortunately, Gödels incompleteness theorems from 1931 has shown that

Hilbert’s program is unattainable in some key areas of mathematics. He showed

that one could always construct a statement which is true that does not follow

from the established set of axioms. In addition, he showed that the system

could not be able to prove its own consistency. Therefore the system can’t

exist in a formalised way.

Nevertheless, Hilbert sparked a debate that would continue to rage on for

many decades about the foundations of mathematics. Watered down versions

of his program have already been adopted and shown to be consisted. This

debate also put down the groundwork for a theoretical basis of computer

science, as worked on by Alonzo Church and Alan Turing. Therefore Hilbert is

still well-known and appreciated for his work.

Later years and Death
David Hilbert worked for many years at the University of Göttingen. In his

late life and near his retirement the Nazi’s took over Germany and purged the

university of many of its Jewish scientists, many of which were his friends. It

is a sad and lonely ending for a man with such great achievements. He is most

well-known for the following famous words, which were also inscribed on his

tombstone:

“Wir müssen wissen. Wir werden wissen.”

“We must know. We will know.”

References:
[1] https://www.britannica.com/biography/David-Hilbert

[2] https://www.famousscientists.org/david-hilbert/

[3] https://en.wikipedia.org/wiki/David_Hilbert

Historical Person:
David Hilbert
Daniël van Gelder, Editorial Staff MaCHazine

32

Volume 23 • Issue 3 • May 2019
M

is
ce

lla
ne

ou
s

During the first semester of the third year of your bachelor, every student

needs to do a minor. This can be done at your own faculty, another faculty

in Delft, another faculty at another university or abroad. Three of our

editors chose the last option and want to tell you about their experience.

Marjolein Leegwater

University of Pittsburgh
For my minor I decided to go abroad for a semester to study at The University

of Pittsburgh, in Pittsburgh, Pennsylvania, in the East of the United States.

The university has almost 30.000 students, an American Football team with

cheerleaders, an orchestra, a mascot, pep rallies and all the other clichés.

Living on campus has been an amazing experience for me: The American “meal

plan” food, gyms in every dorm, a gigantic cathedral on campus, the way

lectures work and all the foreign people that I met. I have seen so many things!

Apart from the campus, the city has a lot to offer. I have been to an NFL

Football game of the Pittsburgh Steelers, to an Ice Hockey game of the

Pittsburgh Penguins, the overlook where you can see the skyline. I visited

museums, theaters, cinemas and a lot of restaurants in the city. And that’s

just Pittsburgh. I have made trips to many places, including New York City,

Washington D.C., Boston, Chicago and Toronto.

I had the opportunity to spend Thanksgiving with an American family in Buffalo

where we ate the traditional turkey and pumpkin pie. It’s hard to summarize

everything I did and everyone I met in an article of only half a page. I am really

happy I got the opportunity to go abroad. Some adjustments are hard and not

every day is as amazing as others but I have so many unforgettable memories

about my time there. If you are considering to study abroad, I would definitely

recommend going.

Eva Slingerland

Kungliga Tekniska Högskolan
For my minor abroad, I have spent a semester at the Kungliga Tekniska högs-

kolan Royal Institute of Technology in Stockholm. Most of the courses are 7.5

ECTS, so for my minor I had to choose 4 courses. I ended up taking a Swedish

language course, two machine learning courses and a course about the theory

and methodology of science. Pretty soon, I noticed that the courses didn’t

demand as much work as what I am used to in Delft and that the TU Delft is

very highly respected. When I told people that I study there, they were really

impressed and a lot of students I talked to told me they applied there but

didn’t get in.

Minor abroad
Marjolein Leegwater, Eva Slingerland, Daniël van Gelder, Third year Bachelor Students

33

Volume 23 • Issue 3 • May 2019
M

iscellaneous
I joined Osqstämman, which is a choir, and THS MAIN, which is an association

for international students. With MAIN, I organized and participated in pub

nights, a beer pong tournament, a karaoke evening, a pub crawl and a big

Christmas dinner and party. It’s really exciting to meet people from all over

the world, but I wanted to get to know some Swedes as well, which was one of

the reasons for me to join Osqstämman. About half of the choir was Swedish

and the other half international, but we sang both English and Swedish songs

which was pretty hard, especially since we needed to know quite a lot of

songs by heart for some performances. We had a fall concert together with an

orchestra and ballet group, a Christmas concert in a beautiful church and Lucia

performances at companies throughout the city, so it was really awesome to

be part of all this. Doing your minor abroad is really a challenge: you have to

arrange a lot of stuff and being on your own in a completely new environment

can be hard sometimes, but in my opinion it’s definitely worth it!

Daniël van Gelder

Nanyang Technological University Singapore
For my minor, I decided to take a leap of faith and go study abroad. During the

last semester I spent my time studying at Nanyang Technological University

in Singapore (NTU). I had an unbelievably great time and an experience of a

lifetime! Not only did I get to meet some awesome people, but I also got to

travel around Asia and see many great things. However, studying was of course

the most important part of my time there. For my minor I took five courses:

three computer science courses, an economics course and a Chinese language

course. It was a lot of fun studying Chinese and although I only learned the

bare basics, the course was really interesting. As for the other courses, they

were less interesting as the level

wasn’t that high and the content

was not that interesting. The

workload was in general lower

than in Delft. This gave me a lot of

opportunities to travel and do cool

stuff in Singapore itself. Singapore

is a really interesting country and

is a kind of hub for Southeast Asia,

this means that you can do a lot of

cultural stuff there. On the other

hand, it is a very modern country

where you can do lots of shopping

and partying.

I got to do a lot of travelling around Asia and got to visit amazing countries.

The countries I visited were: Malaysia, Vietnam, Thailand, Taiwan and Hong

Kong. There are, however, many other countries that I would like to have

visited but didn’t get the chance to travel to. I would recommend anyone to

study abroad for their minor, it is an amazing experience where you learn a

lot. I’m very glad I took the opportunity to go to Singapore and would do it

all over again.

34

Volume 23 • Issue 3 • May 2019
M

is
ce

lla
ne

ou
s

Computer Science puzzle
Louise Leibbrandt, Editorial Staff MaCHazine

Extreme logical thinking: card sorting, well sort of
a) One day you are shown the four cards below. You are told that each card has a number on one side and a letter on the other. You are also told that every card

that has a vowel on one side has an even number on its opposite side: a nice and simple fact, but is it true? Which card or cards must you turn over to prove

whether or not the vowel/even rule is true? Explain why.

b) On another day, you are shown a different set of four cards as below. This time each card has the details of a person in a shop on it. On one side is their age and

on the other is what they are buying. If a person is buying fireworks then they must be over 18. Which cards should you turn over to check everyone is shopping

legally? Explain why.

Solution to last issue’s puzzle
The message was:

THE YOUNG ADA DREAMT OF BEING ABLE TO FLY AND APPROACHED THE PROBLEM OF HER EARTH BOUND STATE WITH TYPICAL GUSTO AND A SCIENTIFIC EYE The

following key was used to encrypt it, though not all letters appear in the message. Therefore, the full key can’t be reconstructed from this message.

35

Mathematical Puzzle
Kilian Buis, Editorial Staff MaCHazine

Volume 23 • Issue 3 • May 2019
M

iscellaneous

Problem 1
Suppose you are the cargo director of a ship and you have agreed to transport
several tanks containing rare fish that you need to bring from A to B.
Unfortunately, as you are passing through shark-infested waters, the boat is
battered by a fierce storm throwing your precious cargo overboard. And to
make it worse, no one seems certain just how many fish tanks are missing.

Fortunately, you have a rescue sub at your disposal, but only enough
fuel for one trip to the ocean floor. You need to know where the tanks are,
so you can gather them all in one quick pass. Not a single fish can be lost.
You find out there are 3 sectors where the cargo could have landed, sectors
Alpha, Beta and Gamma. Thermal imaging shows 50 organisms in the area,
including both your fish and sharks. Furthermore, you find out that sector
Alpha contains 4 fish tanks and 2 sharks and that sector Beta has 2 fish tanks
and 4 sharks. About sector Gamma nothing is known.

You check the shipping notes but all you learn is that each tank had
the same number of fish inside. The cargo hold had space for anywhere from
1 tot 13 tanks. Finally, the old captain tells you that this area has the odd
property that no two sectors can have the same number of sharks, but every
sector has at least one and no more than seven sharks.
Now here is your challenge;
How many fish tanks do you need to find in sector Gamma to rescue all the fish?

Problem 2 Find the answers of the following two infinite square roots:

1 : 10

√
10

√
10

√
10

√
...

2 : 10
n

√
10

n

√
10 n

√
10 n

√
...

Answer Problem 1 N2
Divide the 8 batteries in 3 groups; group A of 3 batteries, group B of 3
batteries and group C of 2 batteries. Test the three possible combinations
of group A. If all the three combinations fail, then you know this group has
either one good battery, or none at all. Do the same with group B. If one of
the combinations in group A works, you found the two working batteries in 3
tries or less. If not, but one of the combinations in group B works, you found
the two working ones in 6 tries or less. In the worst case scenario, both the
combinations in group A and group B fail. Then you will know that group C
contains 2 working batteries and you have found them in 7 tries.

Answer Problem 2 N2
14.5

Source: https://www.wpclipart.com/cartoon/animals/fish/toothy_fish/shark_chasing_fish.png.html

36

Volume 23 • Issue 3 • May 2019
M

is
ce

lla
ne

ou
s

Esports, also known as competitive gaming, has been on the rise for

decades. Over the last few years it has seen exponential growth with the

arrival of Twitch.tv. Esports involves playing,

watching and enjoying your game. This is what DSEA

is all about.

We make new, compete with, and learn from friends.

DSEA
Delft Student E-sports Association (DSEA) has been founded in 2015 and is

the first student electronic sports association in The Netherlands. It was the

idea of three Applied Physics students to build a community for esports in

Delft. The first DSEA event was a humble gathering of gamers in the Sport &

Culture cafe, now known as cafe X, where we watched LCS on the big screen and

played games on our laptops. Now, four years later, we have become a dazzling

community with more than 100 proud members.

Weekly LAN gathering
Being a DSEA member is about the freedom to game in any way you like. For

instance, you may wish to join our weekly LAN party at cafe X. On this evening,

starting 18:30 and ending around 00:30, we drain all of the available energy

from the TU Delft campus into our battle stations.

We play any kind of game you can imagine including the most popular ones:

League of Legends, CS:GO, Super Smash Bros. (Melee & Ultimate), Overwatch,

Hearthstone, StarCraft II, Apex Legends and many more! If you want to find

people playing your game, you can simply head over to our Discord channel.

Alongside gaming we also play offline board games during our LAN evenings,

in combination with some drinks, to improve our bantering skills! To make the

evening even more interesting and help you meet other members, we host a

weekly tournament with a random party game.

Competing in esports
Someone has to be the best. Those who choose to vie for this position will find

a home in our competitive section. We build and support teams by providing

them with regular coaching and practice hours, but also with competitions and

tournaments for them to play at. We love seeing those blue DSEA flames make

quick work of their opposition. The same structure is in place for one-on-one

minded esports athletes and is tailored to their specific games and needs.

To learn from the very best in the world we host viewing parties where we

watch Fnatic almost win a League of Legends world finals in South-Korea, Faze

goup or down in a CS:GO major, and follow Leffen taking down the gods of

melee one by one.

In real life
The most beautiful thing about DSEA is that we are a bunch of people that all

love the same thing: gaming! That is why we like to host social ‘IRL’ events

such as trips to Gamescom, volunteering for Riot Games’ LEC finals at Ahoy and

also more regular events such as bowling, karting, paintball, and you name it.

If you are in any way interested in (board)gaming, you owe it to yourself to

check us out.

Game On!

Esportsdelft.nl

info@esportsdelft.nl

DSEA - Esports in Delft
Floris Doolaard, Secretary of Delft Student E-sports Association

MACHAZINE

Calendar

May
1 Freshmen Algorithm Programming Contest

2 CH vs VvTP by the MaPhyA

3 Pubquiz for Master students by ComMa

7 In-Depth Lecture by the VerdiepCie

8 Pub Crawl by the AkCie

11-12 HackDelft - “It’s Hackening”

14 T.U.E.S.Day Lecture: Technolution

14 Yearbook Presentation Drink

25-26 Weekend activity by the WiFi

27 Members Lunch by the MeisCie

June
3 Teacher of the Year award ceremony

4 T.U.E.S.Day lecture with drinks by Shell

5 BBQ by the SjaarCie

6 Career College 4.2

11-16 Studytrip to Manchester by iCom

14-16 EIWEIW

18 T.U.E.S.Day Lecture CS & AM

20 Committee thank you activity

HackDelft
HackDelft is the third hackathon of the

HackDelft Committee. Join 150 other stu-

dents interested in Mathematics, Computer

Science or design for 24 hours of learning,

building, and having fun. We’re excited to

work with our premium partners to provide

HackDelft-exclusive tools and data for you

to hack with this year!

Freshmen Algorithm

Programming Contest
This programming contest is specially for

freshmen. Join other freshmen in this

afternoon of programming and you may

win something!

Studytrip to Manchester
This year, the iCom will organize a stu-

dytrip from 11 - 16 June to Manchester.

38 students and two teachers from EEMCS

will visit several companies, bring a visit

to the University and have a look at the

cultural aspects of the city and country.

